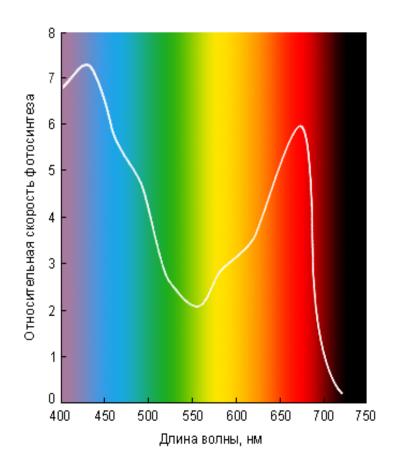
ОБМЕН ВЕЩЕСТВ И ПРЕВРАЩЕНИЕ ЭНЕРГИИ

МЕТАБОЛИЗМ ФОТОСИНТЕЗ ХЕМОСИНТЕЗ ЭНЕРГЕТИЧЕСКИЙ ОБМЕН

Рентгеновские ЖУФ МУФ (290-380 нм) 7-лучи УФ ИК Радиоволны Длина О,1нм 100нм СПМ Тысячи метров волны Видимый свет фиолетовый синий голубой зеленый желтый оранжевый красный

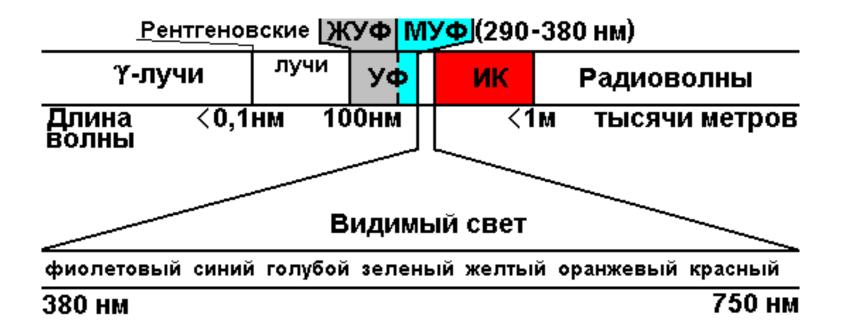

750 нм

Фактор, поставляющий энергию для жизнедеятельности фотоавтотрофных организмов и обеспечивающий синтез основной части органического вещества на Земле, поддерживающий определенную температуру на поверхности Земли. Для живых организмов наиболее важны: свет ультрафиолетовой части спектра, видимый свет и инфракрасное излучение.

380 HM

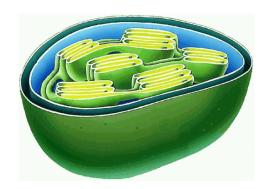
Жесткий ультрафиолет с длиной волны менее 290 нм губителен для живых клеток, до поверхности Земли не доходит, так как отражается озоновым экраном.

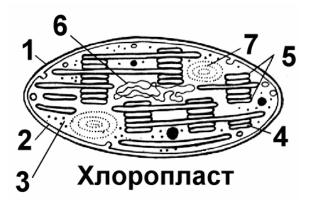
Свет, физические характеристики



Мягкий ультрафиолет с длиной волны от 290 до 380 нм несет много энергии и вызывает образование витамина D в коже человека, он же воспринимается органами зрения многих насекомых.

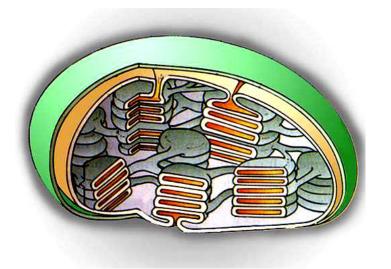
Видимый свет с длиной волны от 380 до 750 нм используется для фотосинтеза фототрофными организмами (растениями, фотосинтезирующими бактериями, синезелеными) и животными для ориентации.


Для фотосинтеза используются, в основном, *синие и красные лучи света*.


Свет, физические характеристики

Инфракрасная часть солнечного спектра (тепловые лучи) с длиной волны более 750 нм вызывает нагревание предметов, особенно важна эта часть спектра для животных с непостоянной температурой тела — пойкилотермных.

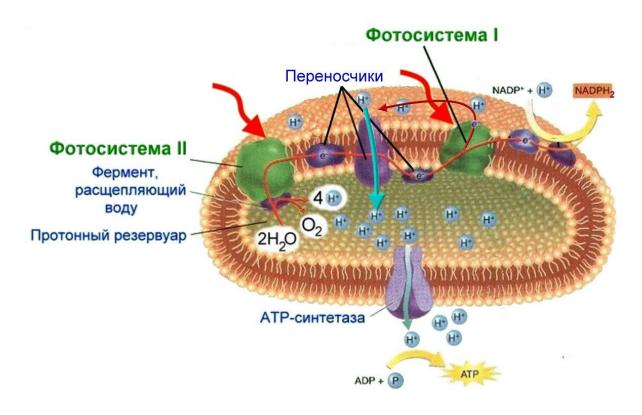
Количество энергии, которое несет свет обратно пропорционально длине волны, то есть меньше всего энергии несут инфракрасные лучи.

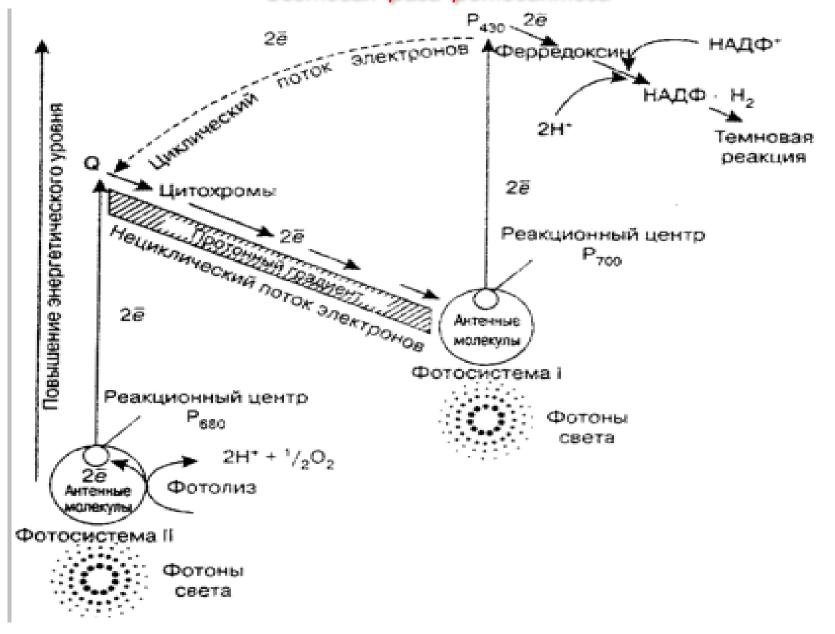



Фотосинтез — процесс образования органических веществ из углекислого газа и воды за счет энергии света, при этом выделяется кислород.

$$6CO_2 + 6H_2O + Q$$
 света \rightarrow $C_6H_{12}O_6 + 6O_2$

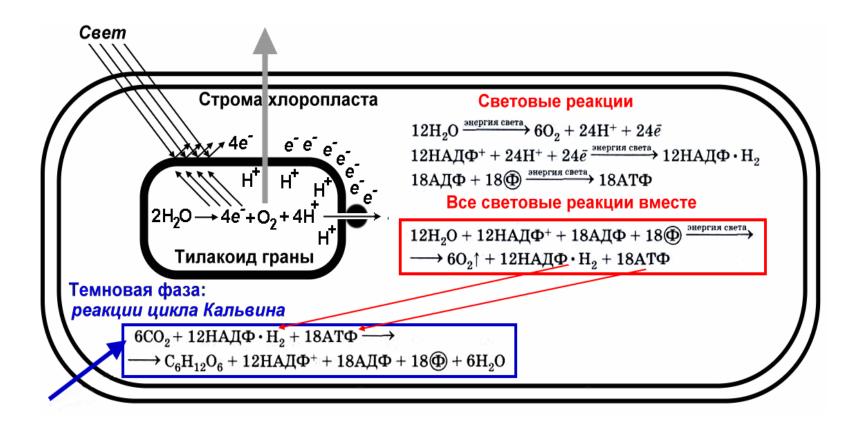
Главным органом фотосинтеза является лист, в клетках которого имеются специализированные органоиды, ответственные за фотосинтез — хлоропласты.


В процессе фотосинтеза различают две фазы: *световую* и *темновую*.

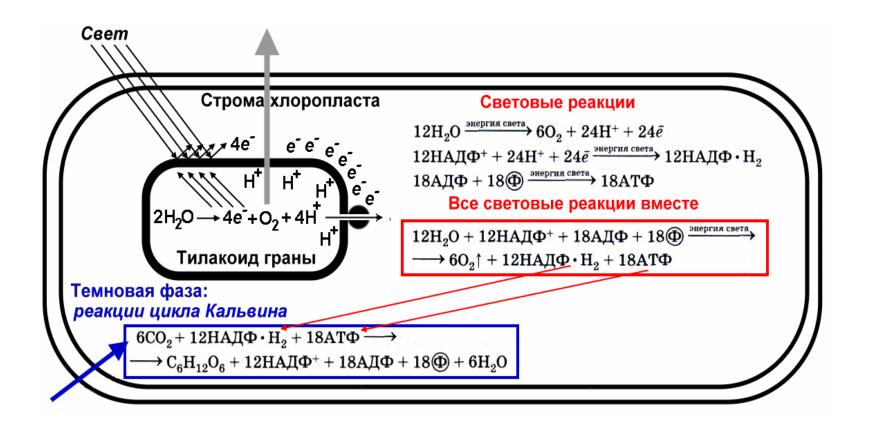


- 1 наружная мембрана
- 2 внутренняя мембрана
- 3 строма с рибосомами 70-S
- 4 тилакоид
- 5 грана
- 6 кольцевая ДНК
- 7 зерно первичного

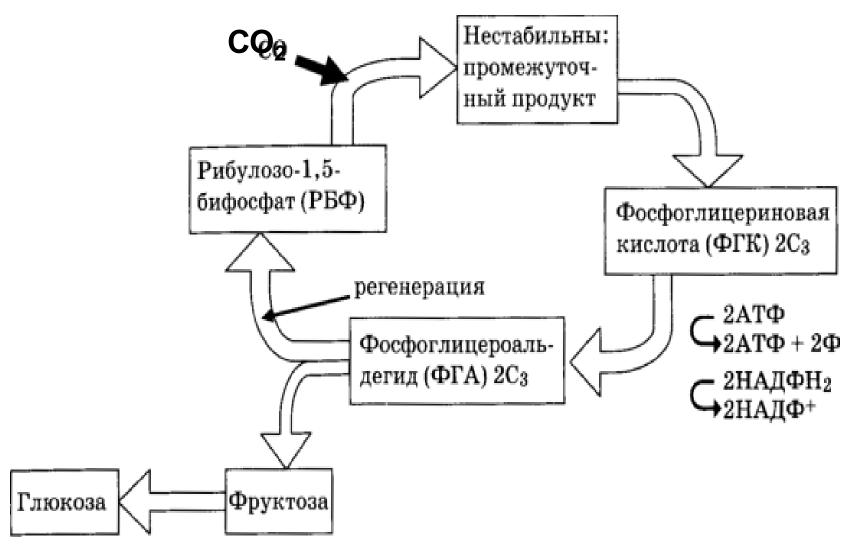
крахмала


Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы

Суммарные уравнения и частные реакции фотосинтеза


Общая реакция фотосинтеза	12H ₂ O + 6CO ₂ → C ₆ H ₁₂ O ₆ + 6O ₂ + 6H ₂ O
Фотолиз воды	12H ₂ O ^{энергия света} 6O ₂ + 24H ⁺ + 24ē
Образование восстановителя	12НАДФ ⁺ + 24Н ⁺ + 24ē энергия света → 12НАДФ • Н₂
Фото- фосфорилирование	18АДФ + 18⊕ энергия света 18АТФ
Все световые реакции вместе	12H ₂ O + 12HAДФ ⁺ + 18AДФ + 18Ф энергия света> —> 6O ₂ ↑ + 12HAДФ • H ₂ + 18AТФ

Темновая фаза фотосинтеза


Темновая фаза протекает в другое время и в другом месте — в строме хлоропласта. Для ее реакций не нужна энергия света. Происходит фиксация углекислого газа, содержащегося в воздухе, причем акцептором углекислого газа является пятиуглеродный сахар рибулозобисфосфат.

Темновая фаза фотосинтеза

Мелвин Кальвин, лауреат Нобелевской премии, показал, как происходит образование углеводов в темновую фазу фотосинтеза. Происходит поглощение CO_2 и карбоксилирование пятиуглеродного сахара рибулозобисфосфата с образованием 6-углеродного соединения. Затем происходит цикл реакций Кальвина, в которых через ряд промежуточных продуктов происходит образование глюкозы.

Цикл Кальвина

Хемоавтотрофный тип питания

С.Н.Виноградский 1856 - 1953

Хемоавтотрофный тип питания

Нитрифицирующие бактерии способны окислять аммиак, образующийся при гниении органических остатков, сначала до азотистой, а затем до азотной кислоты:

$$2NH_3 + 3O_2 \rightarrow 2HNO_2 + 2H_2O + 663 кДж$$

 $2HNO_2 + O_2 \rightarrow 2HNO_3 + 142 кДж$

Азотная кислота, реагируя с минеральными соединениями почвы, образует нитраты, которые хорошо усваиваются растениями.

Бесцветные серобактерии окисляют сероводород и накапливают в своих клетках серу:

$$2H_2S + O_2 \rightarrow 2H_2O + 2S + 272$$
 кДж

При недостатке сероводорода бактерии производят дальнейшее окисление серы до серной кислоты:

$$2S + 3O_2 + 2H_2O \rightarrow 2H_2SO_4 + 636$$
 кДж

Железобактерии окисляют двувалентное железо до трехвалентного:

$$4Fe^{2+} + O_2 + 4H^+ \rightarrow 4Fe^{3+} + 2H_2O + 324$$
 кДж

Водородные бактерии используют энергию, выделяющуюся при окислении молекулярного водорода:

$$2H_2 + O_2 \rightarrow 2H_2O + 235 кДж$$

«Энергетический обмен»

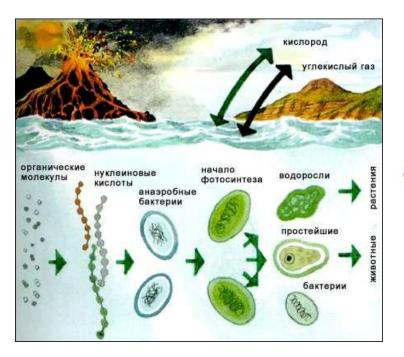
Энергетический обмен. Гликолиз

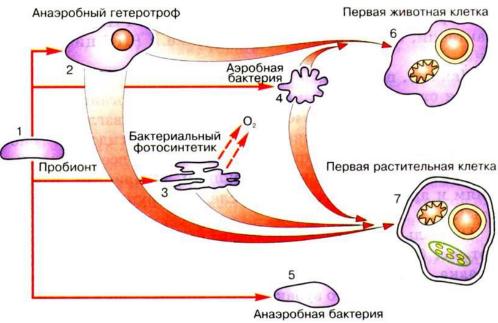
Обмен веществ (метаболизм) = ассимиляции + диссимиляции

Органические вещества пищи являются основным источником не только *материи*, но и *энергии* для жизнедеятельности клеток организма.

При образовании сложных органических молекул была затрачена энергия, потенциально она находится в форме образованных химических связей.

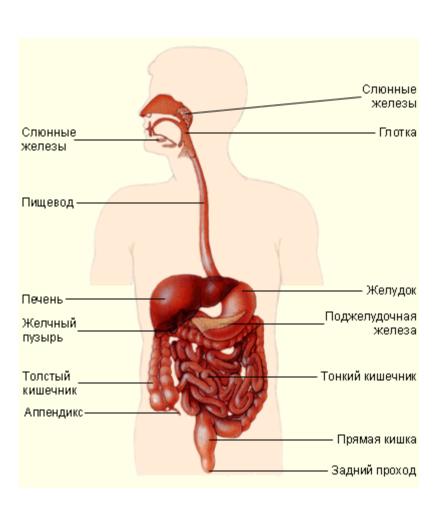
В результате реакций энергетического обмена происходит окисление сложных молекул до более простых и разрушение химических связей, при этом происходит высвобождение энергии.


Биологическое окисление в клетках происходит c участием O_2 :


 $A + O_2 \rightarrow AO_2$

и без его участия, *за счет дегидрирования* или *переноса электронов* от одного вещества к другому:

 $AH_2 + B \rightarrow A + BH_2$, где вещество A окисляется за счет вещества B; $Fe_2^+ \rightarrow Fe_3^+ + e^-$, где двухвалентное железо окисляется до трехвалентного.


Энергетический обмен. Гликолиз

Древнейшие организмы, как полагают, существовали в первичной бескислородной атмосфере Земли и были анаэробными и гетеротрофами. Обеспечение клеток энергией шло за счёт процессов типа гликолиза.

Энергетический обмен.

Процесс энергетического обмена можно разделить на три этапа:

на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров;

на втором происходит бескислородное окисление этих мономеров, субстратное фосфорилирование;

последнем этапе происходит окисление с участием кислорода в митохондриях.

Энергетический обмен

	I подготовительный этап
Где происходит расщепление?	В органах пищеварения. В лизосоме в клетке.
Чем активизируется расщепление?	Ферментами пищеварительных соков.
До каких веществ расщепляются соединения клетки?	Белки—→ аминокислоты. Жиры—→глицерин + жирные кислоты. Углеводы—→глюкоза.
Сколько выделяется энергии?	Мало, рассеивается в виде тепла.
Сколько синтезируется энергии в виде АТФ?	

Первый этап называется подготовительным и заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков до аминокислот. Внутри клетки распад органических веществ происходит в лизосомах под действием целого ряда ферментов. В ходе этих реакций энергии выделяется мало, при этом она не запасается в виде АТФ, а рассеивается в виде тепла.

Энергетический обмен. Гликолиз

	I подготовительный этап	II бескислородный этап
Где происходит расщепление?	В органах пищеварения. В лизосоме в клетке.	Внутри клетки.
Чем активизируется расщепление?	Ферментами пищеварительных соков.	Ферментами мембран клеток.
До каких веществ расщепляются соединения клетки?	Белки — аминокислоты. Жиры — глицерин + жирные кислоты. Углеводы — глюкоза.	Глюкоза —► 2 молекулы молочной кислоты + энергия.
Сколько выделяется энергии?	Мало, рассеивается в виде тепла.	За счет 40% - синтезируется АТФ, 60% - рассеивается в виде тепла.
Сколько синтезируется энергии в виде АТФ?		2 молекулы АТФ.

Гликолиз — это многоступенчатый процесс бескислородного расщепления молекулы глюкозы, содержащей 6 атомов углерода $(C_6H_{12}O_6)$, до двух молекул трехуглеродной пировиноградной кислоты, или ПВК $(C_3H_4O_3)$. Реакции гликолиза катализируются многими ферментами, и протекают они в цитоплазме клеток.

В ходе гликолиза при расщеплении глюкозы выделяется 200 кДж энергии, но 60% (120 кДж) рассеивается в виде тепла. Оставшихся 40% (80 кДж) энергии оказывается достаточно для синтеза из двух молекул АДФ двух молекул АТФ.

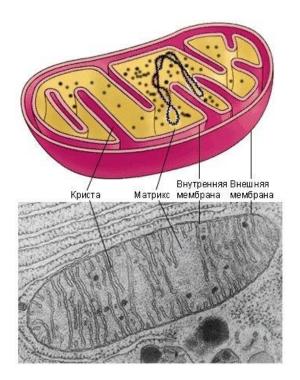
$$C_6H_{12}O_6 + 2AД\Phi + 2H_3PO_4 + 2HAД^+ \rightarrow$$

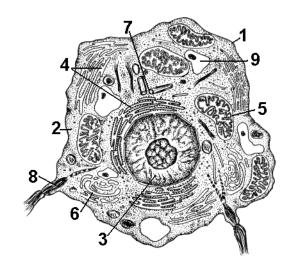
2 $C_3H_4O_3 + 2AT\Phi + 2H_2O + 2HAД·H_2$

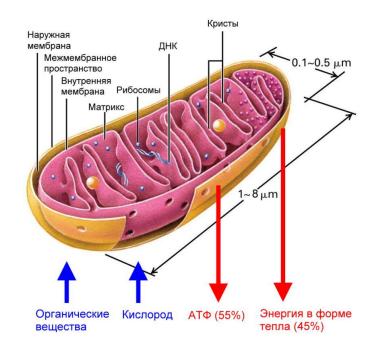
Энергетический обмен. Гликолиз

$$C_6H_{12}O_6 + 2AД\Phi + 2H_3PO_4 + 2HAД^+ \rightarrow 2 C_3H_4O_3 + 2AT\Phi + 2H_2O + 2HAД\cdot H_2$$

Дальнейшая судьба ПВК зависит от присутствия O_2 в клетке. Если O_2 нет, у дрожжей и растений происходит *спиртовое брожение*, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:


I.
$$2C_3H_4O_3 \rightarrow 2CO_2 + 2CH_3COH$$
 (уксусный альдегид)
II. $2CH_3COH + 2HAJ\cdot H_2 \rightarrow 2C_2H_5OH + 2HAJ^+$

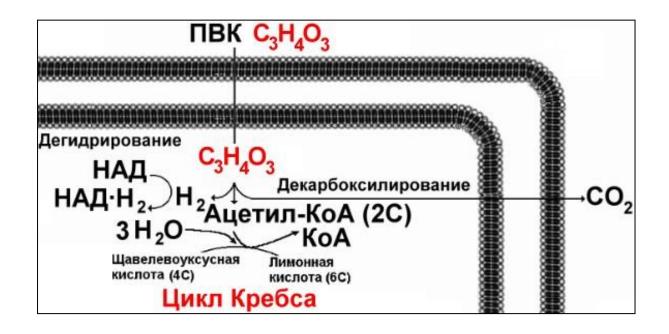

У животных и некоторых бактерий при недостатке О₂ происходит молочнокислое брожение с образованием молочной кислоты:

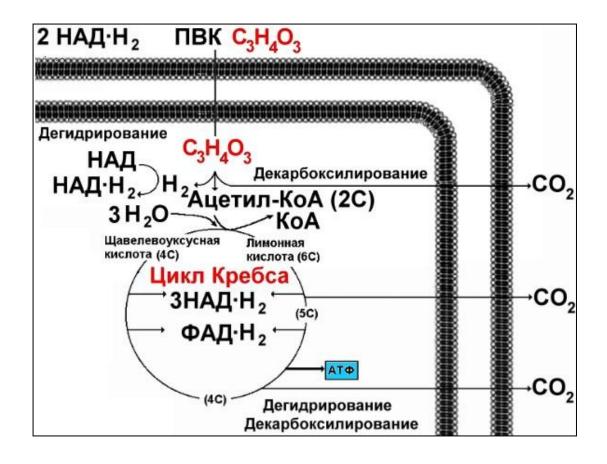

$$2C_3H_4O_3 + 2HAД\cdot H_2 \rightarrow 2C_3H_6O_3 + 2HAД^+$$

	I подготовительный этап	II бескислородный этап	III кислородный этап
Где происходит расщепление?	В органах пищеварения. В лизосоме в клетке.	Внутри клетки.	В митохондриях.
Чем активизируется расщепление?	Ферментами пищеварительных соков.	Ферментами мембран клеток.	Ферментами митохондрий.
До каких веществ расщепляются соединения клетки?	Белки — аминокислоты. Жиры — глицерин + жирные кислоты. Углеводы — глюкоза.	Глюкоза— 2 молекулы молочной кислоты + энергия.	Пировиноградная кислота до СО ₂ и Н ₂ О
Сколько выделяется энергии?	Мало, рассеивается в виде тепла.	За счет 40% - синтезируется АТФ, 60% - рассеивается в виде тепла.	Более 55% энергии запасается в виде АТФ.
Сколько синтезируется энергии в виде АТФ?		2 молекулы АТФ.	36 молекул АТФ.

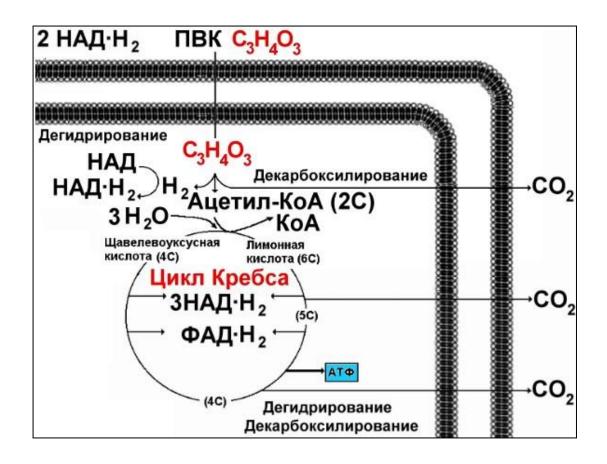
Третий этап энергетического обмена кислородное окисление, или дыхание, происходит в митохондриях.

- Как устроены митохондрии?
- Каковы функции митохондрий?
- о Каково происхождение митохондрий?
- Как образуются новые митохондрии?

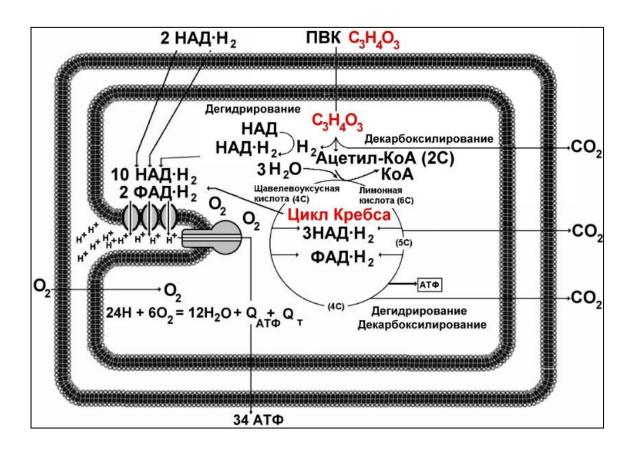


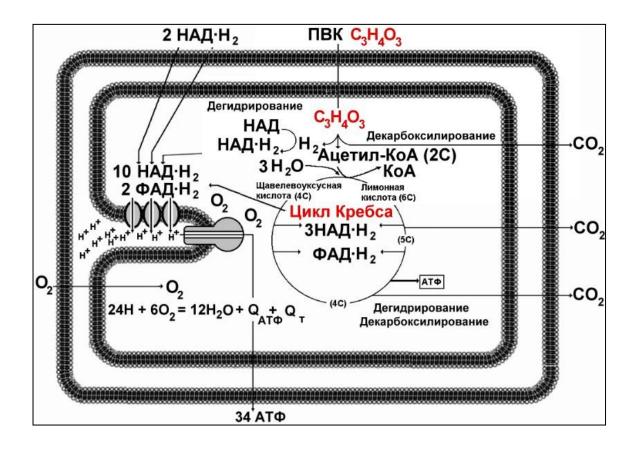

	III кислородный этап
Где происходит расщепление?	В митохондриях.
Чем активизируется расщепление?	Ферментами митохондрий.
До каких веществ расщепляются соединения клетки?	Пировиноградная кислота до СО ₂ и Н ₂ О
Сколько выделяется энергии?	Более 55% энергии запасается в виде АТФ.
Сколько синтезируется энергии в виде АТФ?	36 молекул АТФ.

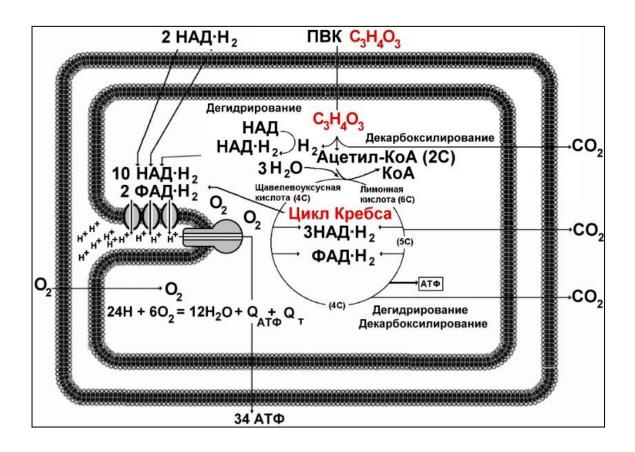
В результате ферментативного **бескислородного** расщепления **глюкоза распадается** не до конечных продуктов (CO₂ и H₂O), а **до соединений, которые еще богаты энергией** и, окисляясь далее, могут дать ее в больших количествах.


Поэтому в аэробных организмах после гликолиза следует завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание. В процессе этого третьего этапа органические вещества, образовавшиеся в ходе второго этапа при бескислородном расщеплении и содержащие большие запасы химической энергии, окисляются до конечных продуктов СО₂ и H₂O.

На первой стадии 3 этапа пировиноградная кислота проникает в митохондрии, где происходит ее *дегидрирование* (отщепление водорода) и *декарбоксилирование* (отщепление углекислого газа) с образованием *двууглеродной ацетильной группы*, которая вступает в цикл реакций, получивших название реакций цикла Кребса.




В цикле Кребса происходит дальнейшее окисление, связанное с **дегидрированием и декарбоксилированием**. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО₂, образуется **5 пар атомов водорода**, связанных с переносчиками (4 НАДН₂, ФАДН₂), а также **моль АТФ**.


Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

$$C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 4AT\Phi + 12H_2$$



У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в *«протонный резервуар»*. Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на *цитохромоксидазу*.

Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (24H+) проходят через канал фермента АТФ-синтетазы и происходит восстановление кислорода до воды (12H $_2$ O) с выделением энергии, часть которой запасается в форме **34 АТФ**. Таким образом, в митохондрии образуется всего **36 АТФ** – 55%, 45% - рассеивается в форме тепла.

Ферменты дыхательной цепи и АТФ-синтетаза на кристах: $24H^+ + 6O_2 + 24e^- \rightarrow 12H_2O + 34AT\Phi + Qm$

Таким образом, в митохондрии образуется всего **36 АТФ** – 55%, 45% - рассеивается в форме тепла.

	I подготовительный этап	II бескислородный этап	III кислородный этап
Где происходит расщепление?	В органах пищеварения. В лизосоме в клетке.	Внутри клетки.	
Чем активизируется расщепление?	Ферментами пищеварительных соков.	Ферментами мембран клеток.	
До каких веществ расщепляются соединения клетки?	Белки → аминокислоты. Жиры → глицерин + жирные кислоты. Углеводы → глюкоза.	Глюкоза—> 2 молекулы молочной кислоты + энергия.	
Сколько выделяется энергии?	Мало, рассеивается в виде тепла.	За счет 40% - синтезируется АТФ, 60% - рассеивается в виде тепла.	
Сколько синтезируется энергии в виде АТФ?		2 молекулы АТФ.	

Различия между фотосинтезом и аэробным дыханием

Фотосинтез	Аэробное дыхание
Анаболический процесс, в результате	Процесс диссимиляции, в
которого из простых неорганических	результате которого молекулы
соединений синтезируются молекулы	углеводов расщепляются до
углеводов	простых неорганических
	соединений
Энергия АТФ накапливается и	Энергия запасается в виде АТФ
запасается в углеводах	
Кислород выделяется	Кислород расходуется
Углекислый газ и вода потребляются	Углекислый газ и вода выделяются
Происходит увеличение органической	Происходит уменьшение
массы	органической массы
У эукариот процесс протекает в	У эукариот процесс протекает в
хлоропластах	митохондриях
Происходит только в клетках,	Происходит во всех клетках в
содержащих хлорофилл, на свету	течение жизни непрерывно

	I подготовительный этап	II бескислородный этап
Где происходит расщепление?		
Чем активизируется расщепление?		
До каких веществ расщепляются соединения клетки?		
Сколько выделяется энергии?		
Сколько синтезируется энергии в виде АТФ?		

Что происходит с энергией, выделяющейся на подготовительном этапе энергообмена:

Рассеивается в форме тепла.

Где расположены ферменты бескислородного этапа энергообмена:

В цитоплазме клеток.

Сколько энергии образуется при гликолизе молекулы глюкозы:

При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 молекул АТФ.

Какие продукты образуются при гликолизе молекулы глюкозы:

$$C_6H_{12}O_6 + 2AД\Phi + 2H_3PO_4 + 2HAД^+ \rightarrow$$

2 $C_3H_4O_3 + 2AT\Phi + 2H_2O + 2HAД·H_2$

Что образуется в животных клетках в результате гликолиза при недостатке кислорода:

$$2C_3H_4O_3 + 2HAД·H_2 \rightarrow 2C_3H_6O_3 + 2HAД+$$

Что образуется в растительных клетках в результате гликолиза при недостатке кислорода:

I.
$$2C_3H_4O_3 \rightarrow 2CO_2 + 2CH_3COH$$
 (уксусный альдегид)
II. $2CH_3COH + 2HAJ \cdot H_2 \rightarrow 2C_2H_5OH + 2HAJ^+$

Каков КПД гликолиза?

Образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 молекул АТФ – 40%.

Как происходит биологическое окисление?

C участием O_2 : A + $O_2 \rightarrow AO_2$,

за счет дегидрирования: $AH_2 + B \rightarrow A + BH_2$,

за счет потери электрона: $Fe_2^+ \rightarrow Fe_3^+ + e^-$.

Кем были первичные организмы Земли по типу питания?

Древнейшие организмы, как полагают, существовали в первичной бескислородной атмосфере Земли и были анаэробами и гетеротрофными организмами.

Гликолиз:

$$C_6H_{12}O_6 + 2AД\Phi + 2H_3PO_4 + 2HAД^+ \rightarrow$$

2 $C_3H_4O_3 + 2AT\Phi + 2H_2O + 2HAД·H_2$

При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

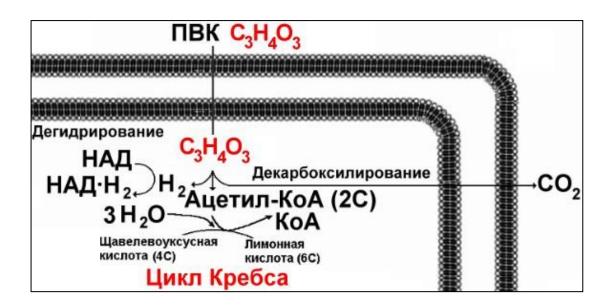
$$C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 4AT\Phi + 12H_2$$

Ферменты дыхательной цепи и АТФ-синтетаза на кристах:

$$24H^{+} + 6O_{2} + 12e^{-} \rightarrow 12H_{2}O + 34AT\Phi + Qm$$

Суммарная реакция энергетического обмена выглядит так:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 38AT\Phi + Qm$$


Если внутренняя мембрана повреждена, то окисление НАД·Н₂ продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.

Сколько моль ПВК образуется при гликолизе молекулы глюкозы?

$$C_6H_{12}O_6 + 2AД\Phi + 2H_3PO_4 + 2HAД^+ \rightarrow$$

2 $C_3H_4O_3 + 2AT\Phi + 2H_2O + 2HAД\cdot H_2$

Сколько при этом образуется энергии? Сколько запасается в форме АТФ? 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 молекул АТФ.

Что происходит с ПВК сразу после ее поступления в митохондрию? Дегидрирование, декарбоксилирование и образование ацетил-КоА.

Где происходят реакции третьего этапа энергетического обмена, кислородного окисления?

В митохондриях.

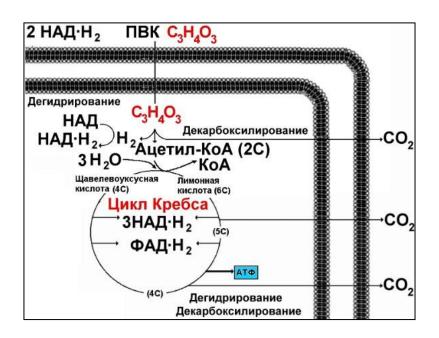
Что образуется при <u>полном</u> разрушении 2 молекул пировиноградной кислоты в митохондриях?

$$2C_3H_4O_3 + 6O_2 + 36 AДФ + 36 H_3PO_4 \rightarrow 6CO_2 + 42H_2O + 36ATФ.$$

Какая часть энергии запасается в митохондриях в форме ATФ, какая часть – рассеивается в форме тепла?

55% - в форме АТФ, 45% - в форме тепла.

Сколько всего молекул АТФ образуется в реакциях энергетического обмена при полном разрушении молекулы глюкозы?

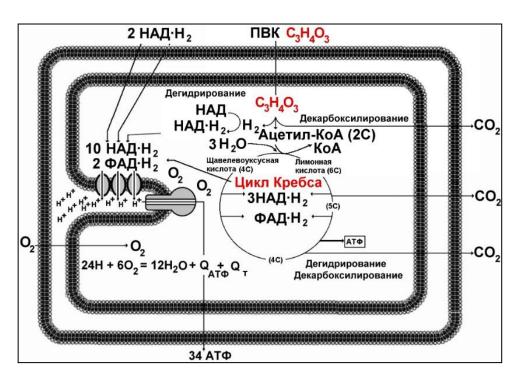

38 молекул, 2 – при гликолизе, 36 – в митохондриях.

Какие вещества, кроме углеводов, могут использоваться в энергетическом обмене?

Липиды, белки, однако мономеры белков, т. е. аминокислоты, слишком нужны клетке для синтеза собственных белковых структур. Поэтому белки обычно представляют собой «неприкосновенный запас» клетки и редко расходуются для получения энергии.

Что происходит в цикле Кребса?

Разрушение лимонной кислоты до щавелевоуксусной с образованием молекулы АТФ, 4 пары водорода захватываются переносчиками.



Как выглядит суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа?

$$C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 4AT\Phi + 12H_2$$

Сколько АТФ образуется АТФ-синтетазой в расчете на 12 пар Н+?

$$24H^+ + 6O_2 + 12e^- \rightarrow 12H_2O + 34AT\Phi + Em$$

Сколько всего АТФ образуется всего при полном окислении молекулы глюкозы:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 38AT\Phi + Em$$