Лекция № 12. Исследование функций на монотонность и экстремумы

На лекции рассматриваются вопросы:

- 1. Исследование функций на монотонность.
- 2. Исследование функций на экстремумы.

1. Исследование функций на монотонность.

- Функция y = f(x) называется **возрастающей** на интервале (a,b), если для любых $x_1, x_2 \in (a;b)$ при $x_2 > x_1$ верно неравенство $f(x_2) > f(x_1)$, т.е. большему значению аргумента соответствует и большее значение функции.
- Функция y = f(x) называется **убывающей** на интервале (a,b), если для любых $x_1, x_2 \in (a;b)$ при $x_2 > x_1$ верно неравенство $f(x_2) < f(x_1)$, т.е. большему значению аргумента соответствует меньшее значение функции.

Теорема (достаточное условие возрастания функции): Если f'(x) > 0 на интервале (a;b), то функция y = f(x) возрастает на интервале (a;b).

Доказательство:

Пусть x_1 , x_2 — две точки, принадлежащие интервалу (a;b) и $x_2 > x_1$. Для функции y = f(x) на отрезке $[x_1;x_2]$ выполняются условия теоремы Лагранжа, поэтому

$$f(x_2)-f(x_1)=f'(c)(x_2-x_1),$$

где $x_1 < c < x_2$.

Так как f'(c) > 0 и $x_2 - x_1 > 0$, то $f(x_2) - f(x_1) > 0$, или $f(x_2) > f(x_1)$ при $x_2 > x_1$.

Это означает, что на интервале (a;b) функция y = f(x) возрастает.

Теорема (достаточное условие убывания функции): Если f'(x) < 0 на интервале (a;b), то функция y = f(x) убывает на интервале (a;b).

Доказательство аналогичное.

Теорема (необходимый признак возрастания (убывания) функции): Если дифференцируемая на интервале (a;b) функция y = f(x) возрастает (убывает), то $f'(x) \ge 0$ ($f'(x) \le 0$).

Например, функция $y = x^3$ возрастает на всей числовой оси; $y' = 3x^2$. Очевидно, что y' > 0 при $x \ne 0$, а y'(0) = 0, т.е. $y'(x) \ge 0$.

Пример 2. Найти интервалы возрастания и убывания функции $y = x^3 - 6x^2 + 9x - 1$.

Решение.

- 1. Находим область определения функции: D(y) = R.
- 2. Находим производную функции $y' = 3x^2 12x + 9$.
- 3. Находим критические точки: y' = 0, $3x^2 12x + 9 = 0$, $x_1 = 1$, $x_2 = 3$.
- 4. Отмечаем критические точки на числовой прямой. В полученных интервалах расставим знак производной.
- 5. Функция возрастает на интервалах $(-\infty;1)$ и $(3;+\infty)$, убывает на интервале (1;3).

2. Исследование функций на экстремумы.

- Точка x_0 называется **точкой максимума** функции f(x), если в некоторой окрестности точки x_0 выполняется неравенство $f(x) < f(x_0)$.
- Точка x_0 называется **точкой минимума** функции f(x), если в некоторой окрестности точки x_0 выполняется неравенство $f(x) > f(x_0)$.
- Значения функции в точке максимума и точке минимума называются соответственно *максимумом* и *минимумом* функции.
- Максимум и минимум функции объединяют общим названием экстремума функции, а точки максимума и минимума называются точкими экстремума.

Теорема (необходимое условие экстремума дифференцируемой функции):

Если в точке x_0 дифференцируемая функция y = f(x) имеет экстремум, то производная функции в этой точке равна нулю, т.е. $f'(x_0) = 0$.

Доказательство:

Пусть $x=x_0$ — точка максимума. Следовательно, $f(x_0)>f(x_0+\Delta x)$ или $f(x_0+\Delta x)-f(x_0)<0$ для $\Delta x\neq 0$.

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} > 0 \text{ при } \Delta x < 0 \text{ и } f'(x_0) = \lim_{\Delta x \to 0^{-0}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0;$$

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} < 0 \text{ при } \Delta x > 0 \text{ и } f'(x_0) = \lim_{\Delta x \to 0^{+0}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0.$$

По условию функция y = f(x) дифференцируема в точке x_0 , следовательно, f'(x) есть определенное число, не зависящее от способа стремления Δx к нулю. Тогда $f'(x_0) = 0$.

• Точки, в которых производная равна нулю, называются *стационарными*.

Непрерывная функция может иметь экстремум и в тех точках, в которых она недифференцируема. Например, функция y = |x| имеет минимум в точке x = 0, но в этой точке производная функции не существует.

Таким образом, для того чтобы функция y = f(x) имела экстремум в точке x_0 , необходимо, чтобы ее производная в этой точке равнялась нулю $(f'(x_0) = 0)$ или не существовала.

Точки, в которых производная f'(x) равна нулю или не существует, называются критическими.

Однако не всякая критическая точка является точкой экстремума.

Например, рассмотрим функцию $y = x^3$; $y' = 3x^2$; y'(0) = 0, т.е. x = 0 критическая точка, но она не является точкой экстремума.

Теорема (первое достаточное условие экстремума):

Пусть функция y = f(x)

- 1) непрерывна в точке x_0 ;
- 2) дифференцируема в окрестности точки x_0 , кроме, быть может, самой точки x_0 ;
- 3) при переходе через точку x_0 производная f'(x) меняет знак, то точка $x = x_0$ является точкой экстремума функции y = f(x).

При этом если производная меняет знак с минуса на плюс, то точка $x = x_0$ является точкой минимума, а если с плюса на минус, то точкой максимума.

Доказательство.

Пусть производная меняет знак с плюса на минус при переходе через точку $x = x_0$.

Запишем формулу Лагранжа для точек $x_{\scriptscriptstyle 0}$ и $x_{\scriptscriptstyle 1}$, где $x_{\scriptscriptstyle 1}$ принадлежит окрестности точки x_0 :

$$f(x_1) - f(x_0) = f'(c)(x_1 - x_0)$$

 $f(x_1) - f(x_0) = f'(c)(x_1 - x_0).$ Если $x_1 < x_0$, то f'(c) < 0, $x_1 - x_0 < 0$. Тогда $f(x_1) - f(x_0) > 0$ $f(x_1) > f(x_0)$.

Если $x_1 > x_0$, то f'(c) > 0, $x_1 - x_0 > 0$. Тогда $f(x_1) - f(x_0) > 0$ $f(x_1) > f(x_0)$.

Таким образом, для любого x из окрестности точки x_0 выполняется неравенство $f(x) > f(x_0)$. Следовательно, $x = x_0$ — точка минимума функции y = f(x).

План исследования функции y = f(x) на экстремум.

- 1. Находим область определения D(y).
- 2. Находим производную f'(x).
- 3. Находим критические точки, в которых производная f'(x) = 0 или не существует.
- 4. Отмечаем на числовой прямой область определения и критические точки. В полученных интервалах расставляем знак производной.
 - 5. Делаем вывод о наличии точек экстремума.
 - 6. Находим экстремумы функции.

Пример 3. Найти экстремумы функции $y = x^3 - 6x^2 + 9x - 1$.

Решение.

- 1—4. Смотри решение примера 8.2.
- 5. Согласно достаточному условию экстремума x = 1 точка максимума, а x = 3 точка минимума данной функции.
- 6. Находим экстремумы: y(1)=3 максимум функции; y(3)=-1 минимум функции.

Теорема (второе достаточное условие экстремума):

Если первая производная f'(x) дважды дифференцируемой функции равна нулю в некоторой точке x_0 , а вторая производная в этой точке $f''(x_0) > 0$, то $x = x_0$ — точка минимума функции y = f(x); если $f''(x_0) < 0$, то $x = x_0$ — точка максимума функции y = f(x).

План исследования функции y = f(x) на экстремум с помощью второй производной.

- 1. Находим область определения D(y).
- 2. Находим производную f'(x).
- 3. Находим критические точки, в которых производная f'(x) = 0 или не существует.
- 4. Находим вторую производную f''(x) и ее значение в стационарных точках.
 - 5. Делаем вывод о наличии точек экстремума.
 - 6. Находим экстремумы функции.

Пример 4. Найти точки экстремумы функции $y = 2x^2 - x^4 + 3$.

Решение.

- 1. Находим область определения D(y) = R;
- 2. Находим производную $y' = 4x 4x^3$.

- 3. Находим стационарные точки: y'=0, $4x-4x^3=0$; $x_1=-1, x_2=0, x_3=1$.
- 4. Находим вторую производную $y'' = 4 12x^2$ и ее значение в стационарных точках: y''(-1) = -8 < 0, y''(0) = 4 > 0, y''(1) = -8 < 0.
- 5. Следовательно, по второму достаточному условию экстремума $x_1 = -1$ и $x_3 = 1$ являются точками максимума, а $x_2 = 0$ точка минимума данной функции.

Замечания:

- 1. Второе достаточное условие экстремума применяют только для стационарных точек. Точки, в которых f'(x) не существует проверяют по первому достаточному условию экстремума.
- 2. Если в стационарной точке f''(x)=0, то следует продолжить исследование по первому достаточному условию.

Пример 5. Исследовать на экстремум и построить график функции:

$$y = x^3 - 6x^2 + 9x - 5.$$

Решение.

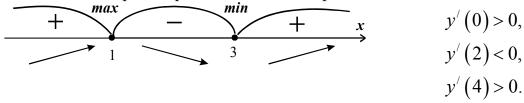
Область определения D(y)=R.

Найдем первую производную $y' = 3x^2 - 12x + 9$.

Приравняем ее к нулю и найдем критические точки:

$$3x^{2}-12x+9=0$$
,
 $x^{2}-4x+3=0$,
 $x_{1}=1$, $x_{2}=3$.

Определим знаки первой производной в интервалах:



x = 1 — точка максимума, x = 3 — точка минимума.

Найдем экстремумы функции:

$$y_{\text{max}} = y(1) = 1 - 6 + 9 - 5 = -1,$$

 $y_{\text{min}} = y(3) = 27 - 6 \cdot 9 + 9 \cdot 3 - 5 = -5.$

Функция возрастает на $(-\infty; 1)$ и на $(3; +\infty)$ и убывает на (1; 3). По полученным данным строим эскиз графика (рис. 4):

