МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ЭЛЕКТРОТЕХНОЛОГИЧЕСКИЕ УСТАНОВКИ

Учебное пособие

Составитель Ю. С. Крежевский

Ульяновск УлГТУ 2016 Утверждено редакционно-издательским советом в качестве учебного пособия

Рецензенты: генеральный директор Ульяновского научно-исследовательского и проектно-технологического института машиностроения, заслуженный деятель науки и техники, канд. техн. наук Быстрицкий В. Е., генеральный директор ООО Прометей, канд. техн. наук Свиридов Ю. П.

Э45 **Электротехнологические установки**: учебное пособие / сост. Ю. С. Крежевский. – Ульяновск : УлГТУ, 2016. – 83 с.

ISBN 978-5-9795-1577-9

Содержатся общие сведения об электрическом оборудовании по принципу действия, мощности, характеристикам потребления электроэнергии. Приводятся конкретные примеры электротехнологических процессов для успешного усвоения материала.

Учебное пособие предназначено для бакалавров, обучающихся по направлению подготовки «Электроэнергетика и электротехника» дневной и заочной форм обучения.

УДК 621.35.035 (075) ББК 31.29-5я7

[©] Крежевский Ю. С, составление, 2016

[©] Оформление. УлГТУ, 2016

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Раздел 1. ЭЛЕКТРИЧЕСКИЕ ПЛАВИЛЬНЫЕ И ТЕРМИЧЕСКИЕ	
УСТАНОВКИ	5
1.1. Классификация электротермического оборудования	5
1.2. Теплопередача в электротермическом оборудовании	7
1.3. Материалы, применяемые в электропечестроении	8
Раздел 2. ЭЛЕКТРИЧЕСКИЕ ПЕЧИ СОПРОТИВЛЕНИЯ	
2.1. Общие сведения и классификация печей сопротивления	
2.2. Типы и конструкции печей сопротивления косвенного нагрева	12
2.3. Электрооборудование печей сопротивления	
2.4. Автоматическое регулирование температурного режима	17
Раздел 3. УСТАНОВКИ ИНДУКЦИОННОГО НАГРЕВА	
3.1. Физические основы индукционного нагрева	21
3.2. Классификация индукционных и диэлектрических установок и области	22
их применения	
3.3. Индукционные канальные электропечи	
3.4. Электрооборудование, схемы питания и управления канальных печей	20
3.5. Индукционные тигельные печи	
3.6. Электрооборудование и схемы питания индукционных тигельных печей	
3.7. Индукционный нагрев под термообработку	
э.о. Высокочастотные установки для нагрева полупроводников и диэлектриков	52
Раздел 4. РУЧНАЯ ДУГОВАЯ СВАРКА	34
4.1. Электрическая дуга	
4.2. Ручная дуговая сварка	37
Раздел 5. ДУГОВЫЕ ЭЛЕКТРИЧЕСКИЕ ПЕЧИ И УСТАНОВКИ	41
5.1. Электродуговые печи, их классификация	41
5.2. Рудно-термические печи	50
5.3. Вакуумные дуговые печи. Области применения и устройство	55
5.4. Печи электрошлакового переплава	62
5.5. Плазменные дуговые установки	
5.6. Электронно-лучевые установки	
5.7. Лазерные технологические установки	72
ЗАКЛЮЧЕНИЕ	78
ПРИЛОЖЕНИЕ	79
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	83
♥+1₽v+11+♥+ 1 /1♥11 1Ľ♥NHH ♥HHL♥VN	

ВВЕДЕНИЕ

Изучение дисциплины «Электротехнологические установки» ставит целью получение теоретических знаний и приобретение практических навыков расчета и выбора электротермического оборудования, необходимых для будущего инженера, в рамках получаемой в вузе специальности.

Электротехнологические процессы широко применяются в промышленности. Оборудование для этих процессов весьма разнообразно по принципу действия, мощности, характеристикам потребления электроэнергии.

Данное учебное пособие охватывает основные виды электротехнологического оборудования: электрические печи и электронагревательные установки, электросварочные установки всех видов, установки для размерной электрофизической и электрохимической обработки металлов и установки электроаэрозольной технологии. Соответственно в понятие «электротехнология» включены следующие технологические процессы и методы обработки материалов:

- электротермические процессы, в которых используется превращение электрической энергии в тепловую для нагрева материалов изделий в целях изменения их свойств или формы, а также для их плавления и испарения;
- электросварочные процессы, в которых получаемая из электрической энергии тепловая энергия используется для нагрева тел в целях осуществления неразъемного соединения с обеспечением непосредственной сплошности в месте сварки;
- электрохимические методы обработки и получения материалов, при которых с помощью электрической энергии осуществляется разложение химических соединений и их разделение путем перемещения заряженных частиц (ионов) в жидкой среде под действием электрического поля (электролиз, гальванотехника, анодная электрохимическая обработка);
- электрофизические методы обработки, при которых для воздействия на материалы используется превращение электрической энергии как в механическую, так и в тепловую (электроэрозионная, ультразвуковая, магнитоимпульсная, электровзрывная);
- аэрозольная технология, при которой энергия электрического поля используется для сообщения электрического заряда взвешенным в газовом потоке мелким частицам вещества с целью перемещения их под действием поля в нужном направлении.

Термин «промышленные электротехнологические установки и оборудование» включает агрегаты, в которых осуществляются электротехнологические процессы, а также вспомогательные электротехнические аппараты и приборы (источники питания, устройства защиты, управления и др.).

Раздел 1. ЭЛЕКТРИЧЕСКИЕ ПЛАВИЛЬНЫЕ И ТЕРМИЧЕСКИЕ УСТАНОВКИ

1.1. Классификация электротермического оборудования

Электротермическое оборудование используется в процессах, в которых происходит преобразование электрической энергии в тепловую. Под электротермической установкой подразумевается комплекс, состоящий из самого электротермического оборудования, источника его электрического питания и устройства для автоматического управления.

Электротермическое оборудование — электрические печи, электронагревательные устройства и приборы — широко распространено в промышленности, на транспорте, в сельском хозяйстве и быту. При таком широком распространении электрические печи должны быть очень разнообразными по конструкции и размерам.

Многообразие электрических печей вызывает необходимость в их классификации. Классификацию по технологическому назначению провести нельзя, так как для одного и того же процесса можно использовать несколько различных типов электротермического оборудования. По этому признаку пришлось бы ограничиться делением электропечей на плавильные и термические. Более правильна и удобна классификация электрических печей по принципиальному признаку — по способу превращения электрической энергии в тепловую (табл. 1.1).

Перед разработкой новых типов электротермического оборудования, призванных заменить оборудование с пламенным нагревом, обязательно проводится технико-экономическое обоснование обоих вариантов, при этом учитываются не только чисто экономические показатели, но и их влияние на качество продукции, на условия труда, потребность в рабочей силе, а также воздействие обоих процессов на окружающую среду.

Ссылки на литературу:

- [1] Крежевский, Ю. С. Методические указания к проведению лабораторных работ по дисциплине «Электротехнологические установки» / Ю. С. Крежевский, Д. А. Ребровская. Ульяновск : УлГТУ, 2015. 61 с.
- [2] Алферова, Т. В. Промышленная электротехнология / Т. В. Алферова. Гомель : ГТУ, 2008.-108 с.
- [3] Болотов, А. В. Электротехнологические установки / А. В. Болотов, Г. А. Шепель. Москва : Высш. шк., 1988. 335 с.

Таблица 1.1 Классификация электротермических установок по способу превращения электрической энергии в тепловую

inperputation strength reason shept in a remiety to				
Род нагрева	Способ превраще- ния энергии	Область применения	Электротермическое оборудование	
Нагрев сопротив- ления	Электрическая энергия превращается в тепловую при протекании тока через твердые или жидкие тела (эффект Джоуля)	Нагрев металлов под термообработку и пластическую деформацию; плавка металлов; сушка материалов; нагрев в вакууме и контролируемой атмосфере	Электрические печи сопротивления; конвективные и радиационные, периодического и непрерывного действия, нагревательные и плавильные; установки контактного нагрева; инфракрасный нагрев	
Нагрев электрической дугой	Электрическая энергия превращается в тепловую в дуговую разряде в газообразной среде или в парах металла	Плавка черных и цветных металлов; ваку- умная дуговая плавка; плазменные плавка и на- пыление; плазменный на- грев газов и получение ацетилена; получение ка- чественных отливок	Электрические дуговые печи прямого и косвенного действия; вакуумные дуговые печи; плазменные дуговые установки	
Нагрев дугой и сопротивле- нием	Электрическая энергия превращается в тепловую в дуговом разряде и при протекании тока в твердых и жидких телах	Получение ферросплавов, карбида кальция, чугуна, фосфора, абразивов, медно-никелевого штейна и ряда цветных металлов	Рудно-термические печи: ферросплавные, для получения карбида кальция, фосфора, абразивов	
Нагрев преимущест- венно в переменном маг- нитном поле	Электрическая энергия превращается в энергию переменного магнитного поля, а затем в тепловую в помещенных в это поле телах	Плавка черных и цветных металлов; нагрев металлов под термическую и пластическую деформацию; поверхностная закалка; зонная плавка; безэлектродный разряд	Индукционные, плавильные печи: канальные и тигельные, периодического и непрерывного действия; индукционные нагревательные установки; установки поверхностной закалки	
Нагрев преимущественно в пере- менном электрическом поле	Электрическая энергия превращается в энергию переменного электрического поля, а затем в теловую в помещенных в этом поле телах	Нагрев диэлектриков и пластмасс под полимеризацию; сушка материалов; стерилизация продуктов; приготовление пищи	Установка диэлектрического нагрева	

Окончание табл. 1.1

Род	Способ превращения	Области	Электротермическое
нагрева	энергии	применения	оборудование
Нагрев элек- тронным пучком	Энергия электронного пучка превращается в тепловую в телах, бомбардируемых электронами пучка	Плавка в вакууме высокореакционных цветных и черных металлов; нагрев металлов в вакууме; напыление; зонная плавка	Электронные плавильные и нагревательные установки прерывистого и непрерывного действия; установки для зонной плавки

1.2. Теплопередача в электротермическом оборудовании

Теплопередача в электрических печах и устройствах может осуществляться всеми видами теплообмена: теплопроводностью, конвекцией и тепловым излучением.

Теплопроводность – процесс передачи теплоты при непосредственном соприкосновении частиц вещества. На основании гипотезы Фурье количество тепловой энергии, переданной путем теплопроводности, равно

$$q = -\lambda \frac{\partial t}{\partial n} \, d\tau dF,\tag{1.1}$$

где λ — коэффициент теплопроводности, характеризующий способность вещества проводить теплоту; $\frac{\partial t}{\partial n}$ — градиент температуры в направлении распространения тепловой энергии; $d\tau$ — элементарное время; dF — элементарная площадка, перпендикулярная направлению теплового потока.

Конвекция – передача теплоты вместе с движением частиц вещества; имеет место только в жидкостях и газах.

Различают естественную (свободную) конвекцию, возникающую вследствие движения среды при разности плотностей более и менее нагретых частиц, и принудительную (вынужденную), создаваемую искусственным путем — вентиляторами, насосами.

Практически передача теплоты конвекцией неотделима от передачи теплоты теплопроводностью.

Количественно передача теплоты конвекцией от твердого тела, омываемого жидкостью или газом (или в обратном направлении), описывается формулой

$$q_{\text{кон}} = \alpha_{\text{кон}} (t_{\text{ст}} - t_{\Gamma}) F_{\text{кон}}, \qquad (1.2)$$

где $\alpha_{\text{кон}}$ — коэффициент теплоотдачи конвекцией; $t_{\text{ст}},\,t_{\text{г}}$ — температура стенки и газа; $F_{\text{кон}}$ — поверхность теплоотдачи.

Процесс конвективного теплообмена весьма сложен и зависит от ряда факторов. Сложность процесса перенесена на коэффициент теплоотдачи.

Коэффициент теплоотдачи зависит от температур теплоотдающей и тепловоспринимающей сред $t_{\rm cr}$, $t_{\rm r}$, геометрических размеров и формы твердого тела, от теплофизических свойств омывающей среды, коэффициента теплопроводности λ , удельной

теплоемкости c, вязкости v и плотности γ , а также от скорости v и характера движения этой среды:

$$\alpha_{\text{\tiny KOH}} = f(t_{\text{\tiny CT}}, t_{\Gamma}, F_{\text{\tiny KOH}}, \lambda, c, \gamma, v, \vartheta).$$

Тепловое излучение — передача энергии в виде электромагнитных волн. Этот процесс имеет место в средах, прозрачных для тепловых лучей.

Тепловое излучение свойственно всякому телу , имеющему температуру, отличную от абсолютного нуля. Тепловая энергия нагретого тела на его поверхности превращается в энергию электромагнитных колебаний с длиной волны от 0,4 до 40 мкм и распространяется со скоростью света. Диапазон длин волн 0,4–0,8 мкм соответствует видимым (световым) лучам; длины волн 0,8–40 мкм имеет инфракрасное излучение.

Энергия электромагнитных волн, встречая на своем пути твердые тела, частично поглощается ими, превращаясь в теплоту, частично отражается от них и частично пропускается сквозь тело, если оно прозрачное. Большинство тел (материалов), применяемых в технике, непрозрачно для тепловых лучей, их пропускающая способность равна нулю.

Основной закон теплового излучения — закон Стефана — Больцмана — определяет удельный поток лучистой энергии g, Bt/m^2 , испускаемой во всем диапазоне длин волн от 0 до ∞ абсолютно черным телом, т. е. таким телом , для которого отражательная и пропускающая способности равны нулю:

$$q = c_s (T/100)^4, (1.3)$$

где T — температура тела, K: T = t + 273; $c_s = 5,7$ Вт·(м² · K⁴) — излучающая способность абсолютно черного тела.

В чистом виде теплопроводность, конвекция и излучение встречаются редко. Чаще имеет место одновременное действие двух или всех трех видов передачи теплоты.

1.3. Материалы, применяемые в электропечестроении

В связи с наличием в электрических печах зон с высокой температурой в них, помимо обычных конструкционных и электротехнических материалов [2], применяют также специфические материалы, способные работать при этой температуре и обладающие необходимыми для этого свойствами. К ним относятся огнеупорные и теплоизоляционные материалы, а также материалы для нагревательных элементов.

Огнеупорные материалы используются для формирования рабочего пространства печи — ее камеры или ванны. Они образуют огнеупорную кладку — внутреннюю часть футеровки печи.

В соответствии с условиями работы к огнеупорным материалам предъявляются следующие основные требования [1]:

1) огнеупорность, т. е. способность выдерживать без деформации и оплавления высокие температуры ($t_{\text{огн}} \ge 1580$ °C);

- 2) механическая прочность при высоких температурах: огнеупорный слой кладки должен выдерживать массу загрузки, тары, транспортирующих устройств, на нем крепятся нагревательные элементы;
- 3) термическая устойчивость способность, не растрескиваясь, выдерживать резкие колебания температуры. Особенно важно это требование для огнеупоров, применяемых в плавильных печах, где на раскаленную кладку ванны после слива металла загружают холодную шихту;
- 4) малая электрическая проводимость: в электрических печах огнеупорный материал часто служит электрическим изолятором, так как на внутренней поверхности огнеупорной кладки монтируются нагреватели; огнеупорный материал служит опорой и разделителем для токоведущих частей;
- 5) малая теплопроводность: чем меньше теплопроводность огнеупорных материалов, тем легче изготовить кладку печи с малыми тепловыми потерями, не увеличивая чрезмерно толщину стен;
- 6) химическая нейтральность: огнеупорные материалы должны быть химически нейтральными к нагреваемому в печи материалу, нагревателям и газовой среде, заполняющей рабочее пространство печи.

Огнеупорные материалы обычно производятся на базе дешевого и недефицитного сырья, содержащего в качестве основных компонентов глинозем Al₂O₃, кремнезем SiO₂ и окись магния MgO. Для печей сопротивления основным огнеупорным материалом является шамот – материал, содержащий 35–45% Al₂O₃, остальное SiO₂ и небольшую долю примесей. По плотности различают шамоты $(y = 1900 - 1800 \text{ кг/м}^3)$ и легковесные $(y = 1300 - 800 \text{ кг/м}^3)$. Легковесные шамоты имеют несколько меньшую механическую прочность, но они лучше по теплоизоляционным свойствам, поэтому их применение целесообразнее для печей с рабочей температурой до 1200 °C. Для высокотемпературных печей в качестве огнеупорных применяют высокоглиноземистые материалы (алунд, корунд, корракс), двуокись циркония ZrO_2 , а также уголь и графит.

Для плавильных печей в основном применяют следующие огнеупорные материалы: динас (SiO $_2\approx 94$ –97%), магнезит (MgO ≈ 95 %), хромомагнезит, доломит и шамот.

Огнеупорные материалы производят в виде порошков для изготовления набивной части кладки (подин и стен плавильных печей), тиглей, а также в виде кирпичей и фасонных изделий.

Назначение *тепловой изоляции* в электрических печах — снижение тепловых потерь через стенки печи. Поэтому основное требование, предъявляемое к теплоизоляционным материалам, — малый коэффициент теплопроводности при достаточной огнеупорности. Теплоизоляционные материалы представляют собой рыхлые легкие массы или пористые изделия (кирпичи, блоки, плиты).

Наиболее широко применяются в промышленных электропечах следующие теплоизоляционные материалы: диатомит, шлаковые и минеральные ваты, перлит, зонолит, различного рода комбинированные материалы на основе асбеста.

Для высокотемпературных печей в качестве тепловой изоляции применяют графитовую крупку, вату, войлок или другие ватообразные и волокнистые материалы на основе высокоогнеупорных окислов и карбидов.

Нагревательные элементы являются основным узлом конструкции печи сопротивления, определяющим надежность работы печи во многом возможность соблюдения требуемого технологического режима.

Материалы для нагревательных элементов выбирают в соответствии с требуемой температурой и атмосферой печи. Эти материалы должны обладать жаростойкостью, т. е. способностью не окисляться при высоких температурах, достаточной жаропрочностью (прочностью при высоких температурах) и обрабатываемостью (прокатываемостью, свариваемостью). Этим требованиям должны удовлетворять также материалы для любых элементов конструкций, находящихся в рабочем пространстве (подовых плит, подвесок, опорных транспортирующих узлов).

К материалам для нагревательных элементов предъявляют специфические требования, вытекающие из особенностей их работы:

- 1. Высокое удельное электрическое сопротивление.
 - При малом удельном электрическом сопротивлении нагреватель, питаемый от сети 380 или 220 В, получается чрезмерно большой длины и малого сечения. Такой нагреватель трудно разместить в печи; кроме того, нагреватель малого сечения имеет небольшой срок службы. С применением понижающих трансформаторов для питания нагревателей усложняется обслуживание и увеличиваются потери энергии в токоподводах.
- 2. Малый температурный коэффициент электрического сопротивления. Если материал обладает значительным температурным коэффициентом, то получается большая разница в электрическом сопротивлении холодного и горячего нагревателей, а следовательно, в мощности, потребляемой печью из сети.
- 3. Постоянство электрического сопротивления. Материал не должен подвергаться «старению» – увеличению сопротивления с течением времени. В результате «старения» нагревателей уменьшается мощность печи.

Основными материалами для нагревателей промышленных электропечей сопротивления с рабочей температурой до 1200 °C являются сплавы хромоникелевые (нихромы), хромоалюминиевые и хромоникельалюминиевые (нихромы с алюминием).

Для электропечей с рабочей температурой выше 1200–1250 °C применяют *неметаллические нагреватели*: карборундовые, дисилицид-молибденовые, графитовые или нагреватели из тугоплавких металлов – молибдена, тантала, вольфрама.

Для печей с рабочей температурой до $1400\,^{\circ}$ С и окислительной атмосферой в рабочем пространстве могут применяться стержневые нагреватели из карборунда. Карборунд (карбид кремния SiC) получают спеканием при $1600–1700\,^{\circ}$ С массы, состоящей из кремнезема и молотого кокса.

Для печей с рабочей температурой до $1600\,^{\circ}$ С возможно применение нагревателей из дисилицида молибдена $MoSiO_2$, получаемого методами порошковой металлургии.

Нагреватели из дисилицида молибдена могут работать в окислительной среде, их максимальная рабочая температура равна 1700 °C.

Графитовые нагреватели применяются для высокотемпературных вакуумных печей или печей с нейтральными атмосферами. Максимальная температура графито-

вых нагревателей 3000 °C, но при работе в вакууме она ниже и зависит от степени разрежения. При высокой степени разрежения наблюдается значительное испарение графита.

Металлические нагреватели из чистых тугоплавких металлов (молибдена, тантала, вольфрама, ниобия) применяют для печей с рабочими температурами более 1400 °C. Для защиты нагревателей от окисления необходимы вакуум или нейтральные атмосферы (гелий, аргон). Нагреватели выполняются из проволоки, стержней или тонких листов. Питание нагревателей осуществляется от понизительных трансформаторов с регулируемым напряжением.

Вопросы для самоконтроля

- 1. Виды теплообмена, происходящие при передаче тепла к нагреваемому телу.
- 2. Какие огнеупорные материалы применяются в печестроении?
- 3. Какие металлические нагреватели применяются при работе электротехнологических установок?
- 4. Какие неметаллические нагреватели применяются при работе электротехнологических установок?

Раздел 2. ЭЛЕКТРИЧЕСКИЕ ПЕЧИ СОПРОТИВЛЕНИЯ

2.1. Общие сведения классификация печей сопротивления

Электрические печи сопротивления по способу превращения электрической энергии в тепловую разделяются на печи косвенного действия и установки прямого нагрева [1].

По технологическому назначению печи сопротивления косвенного нагрева можно разделить на три группы:

1) термические печи для различных видов термической и термохимической обработки черных и цветных металлов, стекла, керамики, металлокерамики, пластмасс и других материалов;

и плавильные печи для плавки легкоплавких цветных металлов химически активных тугоплавких металлов и сплавов;

3) сушильные печи для сушки лакокрасочных покрытий, литейных форм, обмазок сварочных электродов, металлокерамических изделий, эмалей и т. п.

В каждой из этих групп печи по характеру работы, в свою очередь, можно разделить на печи периодического и непрерывного действия.

Для печи периодического действия (садочной) характерно неизменное положение нагреваемого тела (садки) в течение всего времени пребывания в печи. Цикл работы печи включает загрузку, тепловую обработку по заданному режиму и выгрузку. Печь может работать круглосуточно (тогда циклы непрерывно следуют друг за другом) или с перерывами (в одну или две смены).

В печи непрерывного действия (методической) нагреваемые изделия или материалы перемещаются в процессе тепловой обработки от загрузочного конца к разгрузочному, и изменение температуры нагреваемых тел происходит вместе с их движением.

Печи сопротивления косвенного нагрева разделяются по температурному режиму на низко-, средне- и высокотемпературные.

У первых верхняя температурная граница лежит в пределах 600–650 °С и процессы теплообмена идут с значительной или даже преобладающей ролью конвекции. Низкотемпературные печи часто называют конвекционными печами.

В средне- и высокотемпературных печах теплообмен внутри печи осуществляется в основном излучением, а доля конвективного теплообмена незначительна. Печи с преобладающим лучистым теплообменом иногда называют радиационными.

Среднетемпературные печи имеют верхнюю температурную границу 1200—1250 °C, определяемую возможностью применения для нагревательных элементов специальных сплавов сопротивления. Технологические применения этих печей весьма обширны: процессы закалки, нормализации, отжига, термохимическая обработка черных металлов, нагрев под обработку давлением черных и цветных металлов и т. п.

Для многих технологических процессов требуется вакуум или инертные газы в рабочем пространстве печи, поэтому в ряде случаев печи сопротивления выполняют вакуумными, газонаполненными или вакуумно-компрессионными.

2.2. Типы и конструкции печей сопротивления косвенного нагрева

Электропечи сопротивления периодического действия разнообразны по конструкции, их применяют в индивидуальном или мелкосерийном производстве. Из них наиболее широко распространены колпаковые, элеваторные, камерные и шахтные печи.

Колпаковая печь — печь периодического действия с открытым снизу подъемным нагревательным колпаком и неподвижным стендом (рис. 2.1, a).

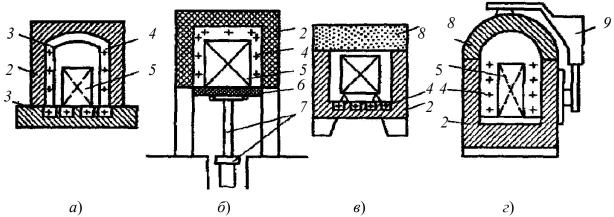


Рис. 2.1. Печи сопротивления периодического действия: а – колпаковая, б – элеваторная, в – камерная, г – шахтная 1 – стенд; 2 – камера печи; 3 – жаропрочный муфель; 4 – нагревательные элементы; 5 – нагреваемое изделие (садка); 6 – опускающийся под; 7 – подъемное устройство; 8 – свод; 9 – механизм подъема свода

Нагреваемые детали (садка) 5 с помощью подъемно-транспортных устройств помещаются на стенд I. Поверх них сначала устанавливается жаропрочный колпак — муфель 3, а затем основной колпак 2 камеры печи, выполненной из металлического каркаса с огнеупорной футеровкой. Нагревательные элементы 4 расположены по бо-

ковым стенкам колпака и в кладке стенда. Питание нагревательных элементов осуществляется с помощью гибких кабелей и штепсельных разъемов.

По окончании нагрева электропитание колпака отключается, и он переносится на соседний стенд, где уже установлена очередная загрузка для нагрева. Остывание садки происходит на стенде под жароупорным муфелем, что обеспечивает необходимую скорость остывания.

В колпаковых печах при каждом цикле теряется лишь теплота, запасенная в муфеле и кладке стенда, что составляет 10–15% от теплоты, запасенной в кладке колпака.

Мощность колпаковых печей достигает нескольких сотен киловатт. Благодаря тому что колпак и муфель могут быть герметизированы, нагрев и остывание садки можно проводить в защитной атмосфере.

Элеваторная электропечь — печь периодического действия с открытой снизу неподвижной камерой нагрева 2 и с опускающимся подом 6. Она представляет собой цилиндрическую или прямоугольную камеру, установленную на колоннах на высоте 3—4 м над уровнем пола цеха (рис. 2.1, 6).

Под печи поднимается и опускается гидравлическим или электромеханическим подъемником, который установлен под камерой нагрева. Нагреваемые изделия — садку 5 нагружают на тележку, затем с помощью лебедки продвигают под печь и поднимают подъемником 7, вдвигая в камеру. По окончании технологического процесса под опускается и изделие снимается.

В низкотемпературных печах нагреватели 4 расположены на стенках. В высокотемпературных печах нагреватели расположены на стенках и в поду. Элеваторные печи служат для отжига, эмалирования, цементации, обжига керамических изделий, спекания и металлизации деталей.

Печи комплектуются многоступенчатыми трансформаторами. Элеваторные печи рассчитаны на емкости в десятки тонн, на мощности до 600 кВт и температуру до 1500 К.

Камерная электропечь (рис. 2.1,в) — печь периодического действия с камерой нагрева, загрузка и разгрузка садки которой производятся в горизонтальном направлении. Камерная печь состоит из прямоугольной камеры 2 с огнеупорной футеровкой и теплоизоляцией, перекрытой сводом 8 и помещенной в металлический кожух. Печь загружается и выгружается через закрываемое дверцей отверстие в передней части.

В поду камерной печи обычно имеется жароупорная плита, на которой расположены нагреватели 4. В печах до 1000 К теплообмен обеспечивается за счет излучения или вынужденной конвекции, обеспечиваемой замкнутой циркуляцией печной атмосферы.

Печи с номинальной температурой до 1800 К работают как с воздушной, так и контролируемой атмосферой. В крупных печах загрузка и разгрузка механизированы.

Шахтную печь выполняют в виде круглой, квадратной или прямоугольной шахты, перекрываемой сверху крышкой. Нагревательные элементы в ней установлены обычно по боковым стенкам. Принципиальная схема такой печи показана на рис. 2.1, г.

Электропечи сопротивления непрерывного действия (методические печи)

При установившемся технологическом процессе термообработки для увеличения производительности предпочтительно применять непрерывно действующие печи. В зависимости от требований технологического процесса в таких печах кроме нагрева изделий до заданных температур можно производить выдержку при этой температуре, а также их охлаждение. В таком случае печи выполняют состоящими из нескольких зон, протяженность которых зависит от конкретных условий проведения технологического процесса.

Часто печи непрерывного действия объединяют в один полностью механизированный и автоматизированный агрегат, состоящий из нескольких печей. В частности, такая линия может включать в себя закалочную и отпускную печи, закалочный бак, моечную машину и сушилку.

Конструкции печей непрерывного действия различаются в основном механизмами перемещения нагреваемых изделий в рабочем пространстве печи.

Конвейерная печь – печь непрерывного действия с перемещением садки на горизонтальном конвейере (рис. 2.2).

Под печи представляет собой конвейер – полотно, натянутое между двумя валами, которые приводятся в движение специальными двигателями. Нагреваемые изделия укладываются на конвейер и передвигаются на нем через рабочее пространство печи. Конвейерная лента может быть выполнена плетеной из нихромовой сетки, штампованных пластин и соединяющих их прутков, а также для тяжелых нагреваемых изделий – из штампованных или литых цепных звеньев.

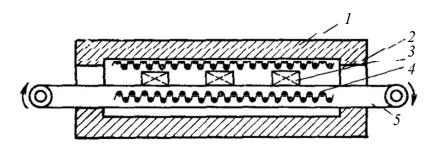


Рис. 2.2. Схема конвейерной электропечи: 1– теплоизолированный корпус; 2 – загрузочное окно; 3 – нагреваемое изделие; 4 – нагревательные элементы; 5 – конвейер

Конвейер размещается целиком в камере печи и не остывает. Однако валы конвейера находятся в очень тяжелых условиях и требуют водяного охлаждения. Поэтому часто концы конвейера выносят за пределы печи. В этом случае значительно облегчаются условия работы валов, но возрастают потери теплоты в связи с остыванием конвейера у разгрузочных и загрузочных концов. Нагреватели в конвейерных печах чаще всего размещаются на своде или в поду под верхней частью ленты конвейера, реже – на боковых стенках.

Конвейерные нагревательные печи в основном применяются для нагрева сравнительно мелких деталей до температуры около 1200 К.

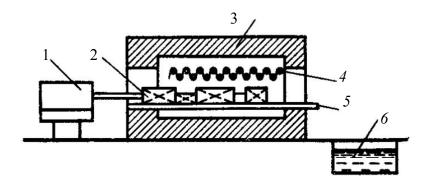


Рис. 2.3. Схема толкательной печи:

1 – толкатель с приводным механизмом; 2 – нагреваемые изделия; 3 – теплоизолированный корпус; 4 – нагревательные элементы; 5 – подина печи; 6 – закалочная ванна

Для высоких температур (выше 1400 K) применяются печи непрерывного действия с перемещением садки путем проталкивания вдоль рабочего пространства — *темпельные печи* (рис. 2.3). Они применяются для нагрева как мелких, так и крупных деталей. На поду таких печей устанавливаются направляющие в виде труб, рельсов или роликового пода, изготовленных из жароупорного материала, и по ним в сварных или литых специальных поддонах перемещаются нагреваемые изделия.

Перемещение поддонов обеспечивается электромеханическими или гидравлическими толкающими устройствами. Основное преимущество таких печей перед другими типами – их относительная простота, отсутствие сложных деталей из жароупорных материалов. Их недостатки – наличие поддонов, применение которых ведет к увеличению тепловых потерь и к повышенному расходу электрической энергии, ограниченный срок службы поддонов.

Толкательные печи, предназначенные для нагрева крупных заготовок правильной формы, выполняют без поддонов. При этом нагреваемые изделия укладывают в печь вплотную непосредственно на направляющие.

Толкательные водородные печи предназначены для различных технологических процессов, требующих нагрева в водороде или диссоциированном аммиаке. Они широко применяются в электроламповом производстве, при производстве металлокерамических деталей и твердых сплавов, для обжига и спекания керамики, для отжига и пайки металлических деталей и т. д.

При использовании в качестве защитного газа водорода или диссоциированного аммиака на загрузочных и разгрузочных камерах печи предусмотрены «свечи» для контроля заполнения ее рабочим газом. Состав рабочего газа каждой печи регулируется самостоятельно и расход его контролируется с помощью расходомеров для водорода и азота. Разгрузочные камеры печей имеют предохранительные клапаны для защиты от разрушения в случае образования в них взрывоопасной смеси.

Протижная электропечь — печь непрерывного действия для нагрева проволоки, прутков или ленты путем непрерывной протижки через камеру нагрева. Она представляет собой муфель с нагревателями, через который пропускается нагреваемое изделие (рис. 2.4).

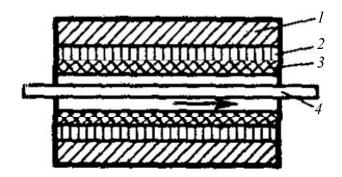


Рис. 2.4. Протяжная электропечь: 1 – теплоизолирующий корпус; 2 – нагреватель; 3 – муфель; 4 – нагреваемое изделие

В протяжных печах применяется также смешанный способ нагрева; прямой – с помощью контактных приводных роликов и косвенный — с помощью нагревателя. Косвенный нагрев обеспечивает термообработку концов прутка в начале и в конце процесса, когда прямой нагрев не может быть осуществлен.

Установки прямого (контактного) нагрева

Установками прямого нагрева принято называть такие, в которых преобразование электрической энергии в тепловую происходит в нагреваемом материале или изделии при непосредственном подключении их к источнику питания электроэнергией за счет прохождения через них электрического тока по закону Джоуля — Ленца.

Прямой нагрев эффективен для термообработки изделий, обладающих равномерным сечением по длине и значительным омическим сопротивлением. Прямой нагрев не имеет пределов по достижимым температурам, обладает высокой скоростью, пропорциональной вводимой мощности, и высоким КПД. Принципиальная схема прямого нагрева показана на рис. 2.5.

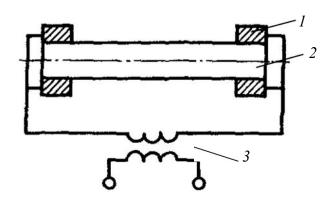


Рис. 2.5. Схема прямого нагрева: 1 – водоохлаждаемые зажимы; 2 – нагреваемое изделие; 3 – печной трансформатор

Установки контактного нагрева предназначены для нагрева заготовок под ковку, отжига труб, проволоки, пружинной проволоки под навивку. Существуют печи прямого нагрева периодического действия для спекания прутков и штабиков из по-

рошков редких и тугоплавких металлов при температуре до 3000 К в защитной атмосфере.

Установка прямого нагрева включает в себя следующие основные узлы:

- а) понижающий трансформатор, монтируемый в кожухе установки с обмоткой, охлаждаемой водой, и несколькими ступенями напряжения в диапазоне 5–25 В, обеспечивающий нагрев тел, имеющих разное сопротивление;
- б) токопровод от выводов обмотки низкого напряжения трансформатора до водоохлаждаемых зажимов;
- в) зажимы, обеспечивающие крепление нагреваемого изделия и необходимое давление в контактах подвода питания;
 - г) привод контактной системы;
 - д) приборы контроля и автоматического регулирования процесса нагрева.
- В установках непрерывного действия для нагрева проволоки, труб, прутков применяются твердые роликовые или жидкостные контакты.

Печи прямого нагрева используются также для графитизации угольных изделий, получения карборунда и т. д.

Графитировочные печи выполняют однофазными, прямоугольной формы с разъемными стенками. В них достигается температура $2600-3100~\rm K$ в вакууме или нейтральной атмосфере. Диапазон регулирования вторичного напряжения $100-250~\rm B$, потребляемая мощность $5-15~\rm thc$. кВ·А.

2.3. Электрооборудование печей сопротивления

Печи сопротивления косвенного действия могут получать питание непосредственно от цеховой сети с напряжением 220, 380 и 660 В или от понижающих электропечных трансформаторов однофазного и трехфазного исполнений (серий ТПО и ТПТ) с широким диапазоном регулирования вторичного напряжения и от автотрансформаторов (серии АПТ). Эти серии разработаны с учетом требований (по значениям вторичного напряжения и диапазону регулирования) питания печей с нагревателями: из сплавов сопротивления, из чистых тугоплавких металлов и из неметаллических материалов.

Электропечные трансформаторы для уменьшения потерь в токоподводах устанавливаются в непосредственной близости к печи. Подвод питания от трансформатора к нагревателям может быть осуществлен кабелем или шинами — в зависимости от конкретной компоновки. Коммутационная аппаратура, аппаратура управления и автоматического регулирования температуры монтируется в щитах управления.

Для управления электрическими печами выпускается серия однозонных щитов управления. Каждый щит предназначается для дистанционного управления включением и выключением нагревателей, контроля и регулирования температуры одной тепловой зоны печи.

2.4. Автоматическое регулирование температурного режима

Автоматическое регулирование процесса нагрева, в частности регулирование температуры, способствует повышению эффективности электрических печей сопротивления (ЭПС). Задача устройств автоматического регулирования состоит в том,

чтобы обеспечить нагрев до заданной температуры и поддерживать ее на постоянном уровне с точностью, соответствующей требованиям технологического процесса.

Функциональная схема автоматического регулирования рабочей температуры печи сопротивления приведена на рис. 2.6.

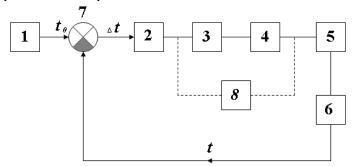


Рис. 2.6. Функциональная схема регулирования температуры:

1 — задающее устройство для ручного и автоматического ввода заданного значения температуры; 2 — регулятор, вычисляющий в зависимости от величины и знака отклонения температуры (Δt) от заданного значения величину регулирующего воздействия; 3 — усилитель мощности; 4 — исполнительное устройство; 5 — объект регулирования; 6 — датчик температуры; 7 — устройство сравнения измерительного и заданного значений температур (для определения отклонения (Δt);

8 – одна из возможных обратных связей

В качестве датчиков температуры используют:

- *термометры сопротивления*. Их принцип работы основан на свойстве различных материалов изменять свое сопротивление в зависимости от температуры. Их применяют для измерения температур до 650 °C. В промышленности используются платиновые термометры типа ТСП и медные типа ТСМ;
- *термопары* два разнородных проводника, спаянные в одной точке. При нагреве места спая на свободных холодных концах проводников появляется термо-ЭДС, пропорциональная температуре. Применяют хромельалюминиевые термопары TXA-1000°C, платино-родий-платиновые $T\Pi\Pi-1300$ °C и т. д.;
- термометры излучения радиационные и фотоэлектрические. Первые типа «Рапир» с пределами измерений $100-4000\,^{\circ}C$ имеют телескоп, концентрирующий с помощью оптики лучистый поток, излученный нагреваемым телом. Во-вторых, чувствительным элементом является фотосопротивление. Рабочая температура фотоэлектрических термометров Φ ЭП-4 $500-2000\,^{\circ}C$, Φ ЭП-60 $200-1400\,^{\circ}C$.

Для измерения, записи и регулирования температуры в сочетании с датчиками температуры применяют электронные мосты, термометрические милливольтметры или электронные потенциометры.

В ЭПС может применяться *непрерывное* и *ступенчатое регулирование тем- пературы*. ЭПС являются объектами с самовыравниванием, когда каждому значению подводимой мощности соответствует свое значение установившейся температуры. Это упрощает задачу регулирования и при любом методе оно осуществляется изменением подводимой мощности. Температура печей сопротивления изменяется довольно медленно, а для поддержания ее постоянной обычно не требуется соответст-

вия между поступавшей в печь и потребляемой нагреваемым телом мощностями в каждый момент времени. Достаточно, если это соотношение выполняется для средних значений мощностей за длительное время. Это позволяет во многих случаях отказываться от сложных непрерывных методов и применять ступенчатое регулирование, которое бывает двух- и трехпозиционным.

При *двухпозиционном регулировании* сначала включают печь на полную мощность. После достижения заданной температуры ее поддержание обеспечивают периодическими включениями и отключениями печи, то есть работой по циклу полная мощность – нулевая мощность. Средняя мощность, потребляемая ЭПС

$$P_{cp} = P_{_{HOM}} \frac{\tau_{_{GK\Pi}}}{\tau_{_{GK\Pi}} + \tau_{_{OMK\Pi}}} = P_{_{HOM}} \frac{\tau_{_{GK\Pi}}}{\tau_{_{UUK\Pi a}}}, \tag{2.1}$$

где P_{cp} – средняя мощность; $P_{\text{ном}}$ – полная или номинальная мощность; $\tau_{\text{вкл}}$ – время включения; $\tau_{\text{откл}}$ – время отключения; $\tau_{\text{цикла}}$ – время цикла.

По мере прогрева ЭПС уменьшается разность температур между нагревательным элементом (НЭ), стенками печи и нагреваемой заготовкой, что приводит к уменьшению времени включения и увеличению времени отключения, поэтому средняя мощность начинает падать (рис. 2.7).

Для облегчения работы коммутационной аппаратуры необходимо стремиться к уменьшению частоты переключений при одновременном снижении величины коммутируемой мощности. Это достигается регулированием по циклу: полная мощность — нулевая мощность — частичная мощность. *Такое регулирование называется трехпозиционным*. В период разогрева печь включается на полную мощность, при достижении заданной температуры переключается на частичную мощность, и в период выдержки регулируется по циклу «частичная мощность» — «выключено».

Частичную мощность можно получить переключением НЭ с параллельного соединения на последовательное при однофазном питании, со звезды на последовательное и с треугольника на звезду – при трехфазном питании. Для нормальной работы ЭПС необходимо, чтобы частичная мощность была больше мощности тепловых потерь. Ступенчатое регулирование может обеспечить поддержание температуры с точностью ±10%. Если по условиям технологического процесса требуется более высокая точность, то необходимо применять непрерывное плавное регулирование. При этом каждый элемент системы регулирования воздействует на последующий непрерывно, т. е. выходная величина регулятора является непрерывной функцией рассогласования на его входе. При непрерывном регулировании в качестве исполнительного устройства используют бесконтактный выключатель с применением тиристоров.

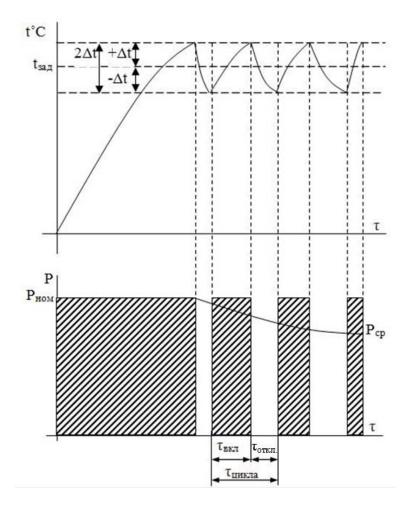


Рис. 2.7. График изменения температуры и мощности печи при двухпозиционном регулировании

Вопросы для самопроверки

- 1 Классификация ЭПС.
- 2. Принцип действия печей сопротивления.
- 3. Конструкции нагревательных элементов.
- 4. Понятие об удельной поверхностной мощности и сроке службы НЭ.
- 5. Датчики температуры. Характеристика методов автоматического регулирования температуры ЭПС.
 - 6. Двухпозиционное регулирование температуры.
 - 7. Трехпозиционное и непрерывное регулирование температуры.

Раздел 3. УСТАНОВКИ ИНДУКЦИОННОГО НАГРЕВА

3.1. Физические основы индукционного нагрева

Индукционные установки и установки диэлектрического нагрева по принципу действия относятся к электротермическим установкам, где электрическая энергия выделяется непосредственно в нагреваемых изделиях. Поэтому они обладают большей производительностью, а часто и более высоким КПД по сравнению с установками косвенного нагрева (с передачей энергии путем теплопроводности, конвекцией, излучением) [2].

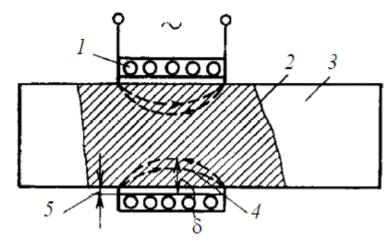


Рис. 3.1. Принципиальная схема индукционного нагрева: 1 — индуктор; 2 — магнитный поток в нагреваемом теле; 3 — нагреваемое тело; 4 — наведенный ток; 5 — воздушный зазор

Индукционный нагрев проводящих тел — проводников первого и второго рода — основан на поглощении ими электромагнитной энергии, возникновении наведенных вихревых токов, нагревающих тело по закону Джоуля — Ленца. Переменное магнитное поле создается индуктором, который по отношению к нагреваемому телу является первичной обмоткой трансформатора. Нагреваемое тело выполняет роль вторичной обмотки трансформатора, содержащей один короткозамкнутый виток (рис. 3.1).

Переменный магнитный поток Φ (2), создаваемый первичной обмоткой — индуктором I, пропорционален его магнитной движущей силе (МДС) и обратно пропорционален сопротивлению магнитной цепи. Возникающая в нагреваемом теле ЭДС $E=4,44\Phi wf\ 10^{-8},\ B$, при известном значении сопротивления нагреваемого тела обеспечивает возникновение в нем вихревого тока I (4) и выделение соответствующей мощности: $P=I^2r=E^2r/z^2,$

Таким образом, индукционный нагрев является прямым нагревом сопротивлением, а включение нагреваемого тела в цепь тока производится за счет магнитной связи. Индукционный нагрев обладает достоинствами прямого нагрева сопротивлением — высокая скорость нагрева, пропорциональная вводимой мощности, неограниченный уровень достигаемых температур, достаточных для нагрева металлов, плав-

ления металлов и неметаллов, перегрева, расплава, испарения материалов и получения плазмы.

Режим выделения мощности при индукционном нагреве обладает большим быстродействием и легко поддается автоматизации по требованию технологических процессов, проходящих в открытой атмосфере, в защитных газах и вакууме.

Особенностью индукционного ввода энергии является возможность регулирования пространственного расположения зоны протекания вихревых токов. Во-первых, вихревые токи протекают в пределах площади, охватываемой индуктором. Нагревается только та часть тела, которая находится в магнитной связи с индуктором независимо от общих размеров тела. Во-вторых, глубина зоны циркуляции вихревых токов и, следовательно, зоны выделения энергии зависит, кроме других факторов, от частоты тока индуктора (увеличивается при низких частотах и уменьшается с повышением частоты). Эффективность передачи энергии от индуктора к нагреваемому току зависит от величины зазора между ними и повышается при его уменьшении. Как и нагрев сопротивлением, индукционный нагрев обеспечивает высокую производительность и хорошие санитарно-гигиенические условия труда, хотя для его осуществления требуются более сложные источники питания и повышенный удельный расход электроэнергии на технологические операции.

Принципиальная схема индукционного нагрева включает в себя индуктор, зазор и нагреваемое тело. Эти элементы определяют эффективность преобразования электрической энергии, получаемой от источника питания, в тепловую. *Индуктор* создает переменный во времени магнитный поток, т. е. электромагнитную волну, падающую на нагреваемое тело. Сам индуктор, находящийся в созданном им электромагнитном поле, тоже поглощает энергию, которая выделяется в нем в виде потерь.

3.2. Классификация индукционных и диэлектрических установок и области их применения

По назначению индукционные установки делятся на плавильные печи, миксеры и нагревательные установки. Под индукционными электропечами подразумевают индукционные установки, предназначенные для нагрева металлов и сплавов выше температуры их расплавления и перегрева металла до температуры разливки. В эту группу входят электропечи для плавки черных металлов и для плавки цветных металлов и сплавов. Миксеры служат как для подогрева жидкого металла до температуры разливки, так и для выравнивания его состава и поддержания его температуры.

По частоте тока источника питания индукционные установки делятся на печи и нагревательные установки низкой (промышленной) частоты (50 Γ ц), печи и нагревательные установки средней частоты (150–10 000 Γ ц), печи и нагревательные установки высокой частоты (50–1000 к Γ ц) и установки диэлектрического нагрева – установки сверхвысокой частоты (5–5000 М Γ ц).

По конструкции индукционные печи и нагревательные установки могут выполняться открытыми, т. е. работающими при атмосферном давлении воздуха, и герметически закрытыми, т. е. работающими или с разрежением воздуха внутри плавильного пространства, или с повышенным давлением при заполнении рабочего пространства нейтральным газом (азотом, аргоном, водородом).

По режиму работы различают печи и установки периодического действия и печи и установки непрерывного действия.

По принципу действия индукционные печи подразделяются на тигельные (печи без сердечника) и канальные (печи с сердечником), названные так по элементам конструкции печи, где находится расплавленный металл.

Индукционный нагрев металлов в настоящее время широко применяется в различных областях промышленности для самых разнообразных целей: для плавки металлов и сплавов, горячей деформации металла, термообработки, зонной очистки металлов и т. п.

3.3. Индукционные канальные электропечи

Работа индукционной канальной печи основана на использовании явления электромагнитной индукции. По устройству канальная печь напоминает конструкцию силового трансформатора: она имеет стальной расслоенный магнитопровод M, первичную обмотку – индуктор w_1 и вторичную обмотку в виде замкнутого канала, заполненного жидким металлом, w_2 (рис. 3.2).

В магнитопроводе наводится переменный магнитный поток Φ_1 . Этот переменный поток по закону электромагнитной индукции наводит во вторичной обмотке переменную ЭДС U_2 . Ее действующее значение, B, равно:

$$U_2 = 4,44\Phi_1 w_2 f, \tag{3.1}$$

где Φ_1 – магнитный поток, создаваемый индуктором, Вб; f – частота тока, Γ ц; w_2 – число витков вторичной обмотки (обычно $w_2 = 1$).

Так как канал с расплавленным металлом представляет собой короткозамкнутый виток, в нем возникает ток I_2 . При прохождении тока по металлу выделяется тепловая энергия, Дж, которая и разогревает металл:

$$Q_a = I_2^2 R_2 t, (3.2)$$

где R_2 — активное электрическое сопротивление металла в канале, Ом; t — время прохождения тока, с; I_2 — ток в канале печи, A.

Индукционная канальная печь отличается от трансформатора следующими характерными чертами:

- 1) совмещением вторичной обмотки с нагрузкой;
- 2) наличием во вторичной обмотке только одного витка (канала);
- 3) высотой канала, небольшой по сравнению с высотой индуктора;
- 4) влиянием поверхностного эффекта, так как глубина проникновения тока со-измерима с толщиной канала;
- 5) низким коэффициентом мощности печи соз \prod_n из-за наличия большого по тока рассеяния Φ_s , вызванного необходимостью футеровки печи.

Практически Φ_s составляет приблизительно 20–2 % Φ_1 , поэтому

$$U_2 < U_1/k_{\rm rp}$$
,

где $k_{\rm rp} = w_{1/}w_{2} -$ коэффициент трансформации; для печи $k_{\rm rp} = w_{1}.$

На рис. 3.2 представлены схема замещения и векторная диаграмма индукционной канальной печи. Векторная диаграмма подобна векторной диаграмме трансформатора, находящегося в режиме короткого замыкания, когда вторичная обмотка является нагрузкой.

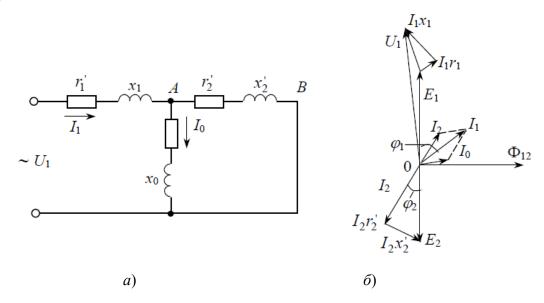


Рис. 3.2. Индукционная канальная печь: а – схема замещения, б – векторная диаграмма

Реактивная мощность канальной печи в несколько раз больше ее активной мощности из-за большого зазора между индуктором и каналом печи. Естественный коэффициент мощности канальной печи составляет 0,3–0,7.

Для улучшения соѕ φ_{Π} параллельно индуктору печи присоединяют конденсаторную батарею, реактивная мощность которой должна быть равна реактивной мощности печи. Компенсация естественного коэффициента мощности печи необходима для того, чтобы не нагружать сеть (или понижающий силовой трансформатор) реактивным током, значения которого в несколько раз превосходят активный ток.

Главными достоинствами канальных печей перед другими печами, предназначенными для этих же целей, являются:

- 1) высокий КПД η_9 , в результате этого в канальных печах плавка металлов происходит с низким расходом электроэнергии;
- 2) малый угар металла, так как здесь нет большого перегрева металла на поверхности ванны печи и сильного окисления металла;
- 3) наличие электродинамического перемешивания металла в каналах печи, что позволяет получать однородный по химическому составу металл без применения каких-либо механических перемешивателей.

Но при выборе типа печи необходимо считаться и с недостатками канальных печей, главные из которых:

1) необходимость непрерывного, круглосуточного режима работы. Иногда печь оставляют во включенном состоянии для поддержания температуры расплавленного металла в несливаемом остатке в ванне и канале печи во избежание «замораживания» печи;

- 2) необходимость выплавки металлов и сплавов с однородным составом. В противном случае пришлось бы производить промывные плавки, что связано с излишней затратой электроэнергии и времени;
- 3) малая стойкость огнеупорной футеровки канальной части для плавки высокотемпературных металлов и сплавов, так как температура металла в канале печи может превышать температуру в ванне печи на 50-200 °C.

Индукционные канальные печи имеют следующие основные узлы: кожух, футеровка ванны печи, индукционные единицы (магнитопровод, индуктор, канал), токоподводы, механизм наклона печи или механизм слива металла из печи, система охлаждения.

Рассмотрим конструкции отдельных узлов печи.

Кожух. В зависимости от назначения печи кожух бывает различной формы: цилиндрической (с горизонтальной или вертикальной осью), прямоугольной и овальной – в зависимости от емкости металла, мощности, количества индукционных единиц, технологических особенностей выплавки металла или сплава.

Футеровка ванны печи. Выкладывается из огнеупорных кирпичей (магнезита, шамота) или набивается из специально приготовленного порошка соответствующего химического и гранулентного состава. Состав футеровочной массы выбирают в зависимости от расплавляемого металла или сплава, предназначенного для плавки в печи. Футеровочные массы бывают кислые, основные или нейтральные.

Индукционные единицы. В последнее время почти все конструкции индукционных канальных печей выполняются с отъемными индукционными единицами, присоединяемыми к кожуху ванны печи с помощью болтов и шпилек. Индукционная единица представляет собой электропечной трансформатор с футерованным каналом для размещения расплавленного металла. Отъемная индукционная единица состоит из следующих элементов: кожуха, магнитопровода, футеровки, индуктора.

Индуктор. Для изготовления индуктора применяют либо обмоточные провода прямоугольного сечения (как для силовых трансформаторов), либо медные равностенные трубки для обеспечения водяного охлаждения круглого или прямоугольного сечения, либо же трубки специального профиля с утолщенной стороной, обращенной к каналу с металлом.

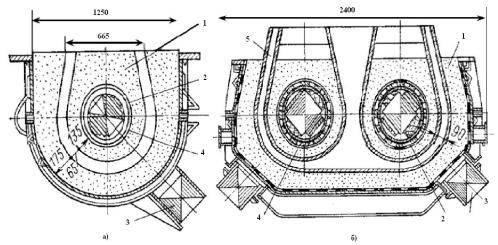


Рис. 3.3. Конструкция индукционных единиц печей для плавки чугуна: а — мощностью 560 кВт, б — мощностью 1000 кВт; 1 — футеровка, 2 — водоохлаждаемый ксенон, 3 — магнитопровод, 4 — индуктор, 5 — шаблон канала

Токоподводы. Выполняют из труб, шин или в виде медных гибких водоохлаждаемых кабелей из скрученных проволочек, помещенных в резинотканевый рукав. Во избежание опасного прикосновения токоподводы должны быть надежно ограждены. Для уменьшения потерь в токоподводе конденсаторную компенсирующую батарею устанавливают поблизости от печи (рядом с печью или под рабочей площадкой).

Механизмы для наклона печи и загрузки шихты. Для наклона печей периодического действия при сливе металла применяют механизмы наклона. Печи малого объема и небольшой мощности обслуживаются тельферами с системой блоков или лебедками с ручным приводом. Печи с большим объемом металла имеют механизмы с гидравлическим или электромеханическим приводом.

3.4. Электрооборудование, схемы питания и управления канальных печей

Индукционные канальные печи в настоящее время выполняются со сменными индукционными единицами мощностью от 200 до 1000 кВ·А. Индукционные единицы мощностью до 300 кВ·А можно питать от индивидуальных однофазных электропечных автотрансформаторов, подключаемых к заводской подстанции на напряжение 380 В с ручной или автоматической регулировкой вторичного напряжения от 0 до 500 В (автотрансформаторы АПО-180/500 и АПО-360/500 мощностью 180 и 360 кВ·А соответственно) в зависимости от требуемой производительности печи. Регулирование может быть осуществлено для поддержания температуры и параметров электрического режима на определенном уровне.

Индукционные единицы мощностью свыше $300~{\rm kBA}$ питаются от высоковольтных электропечных трансформаторов с регулированием вторичного напряжения под нагрузкой путем переключения витков вторичной или первичной обмотки без выключения печи. Мощность таких трансформаторов лежит в пределах от $400~{\rm дo}$ $1600~{\rm kB\cdot A}$. Первичная обмотка трансформаторов подключается к сети высокого напряжения (6 или $10~{\rm kB}$).

Для подключения электропечных трансформаторов к высоковольтным сетям служат комплектные распределительные устройства (КРУ).

Индукционная единица подключается ко вторичной стороне (стороне низшего напряжения) электропечного трансформатора с помощью контакторов, имеющих дугогасящие устройства. Иногда включаются два контактора с параллельно работающими силовыми контактами в главной цепи.

Для компенсации реактивной мощности печи служат конденсаторы, подключаемые параллельно индуктору.

Схема питания однофазной индукционной единицы приведена на рис. 3.4. Реле максимального тока РМ1 и РМ2 служат для контроля и отключения печи при перегрузках и коротких замыканиях.

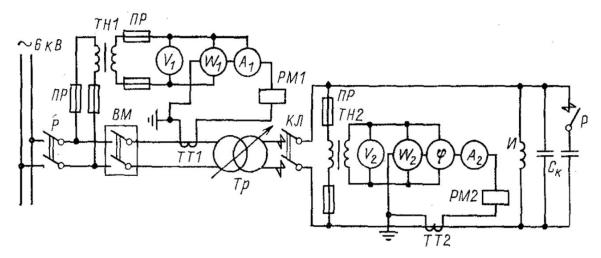


Рис. 3.4. Принципиальная схема питания индукционной единицы канальной печи:

ВМ – выключатель мощности; КЛ – контактор; Тр – трансформатор; C_{κ} – конденсаторная батарея; И – индуктор; ТН1, ТН2 – трансформаторы напряжения; ТТ1, ТТ2 – трансформаторы тока; Р – разъединитель; ПР – предохранители; РМ1, РМ2 – реле максимального тока

Трехфазные трансформаторы используются для питания трехфазных или двухфазных печей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.

Для питания печи в период рафинирования металла и для поддержания режима холостого хода служат автотрансформаторы для более точного регулирования мощности в период доводки металла до нужного химического состава (при спокойном, без бурления, режиме расплавления), а также для начальных пусков печи при первых плавках, которые проводятся при малом объеме металла в ванне для обеспечения постепенной сушки и спекания футеровки. Мощность автотрансформатора выбирают в пределах 25–30% мощности основного трансформатора.

Для контроля температуры воды и воздуха, охлаждающих индуктор и кожух индукционной единицы, устанавливают электроконтактные термометры, выдающие сигнал при превышении температуры свыше допустимой. Питание печи автоматически отключается при повороте печи для слива металла. Для контроля положения печи служат конечные выключатели, сблокированные с приводом электропечи.

3.5. Индукционные тигельные печи

Индукционные тигельные печи по частоте источника питания подразделяются на три вида:

- 1. Печи высокой частоты (50–500 кГц) с питанием от ламповых генераторов.
- 2. Печи средней (повышенной) частоты (150–10 000 Гц) с питанием от умножителей частоты, вращающихся машинных генераторов и статических преобразователей.
- 3. Печи низкой (промышленной) частоты (50–60 Гц). По конструкции печи выполняются открытыми для плавки металлов и сплавов в воздушной атмосфере и гермети-

чески закрытыми – для плавки в вакууме или в среде нейтральных газов (вакуумно-компрессионные печи).

Индукционные тигельные печи получили распространение в основном для выплавки высококачественных сталей и чугунов специальных марок, т. е. сплавов на основе железа, так как при плавке черных металлов тигельные печи имеют более высокий КПД, чем при плавке цветных металлов.

Индукционные тигельные печи обладают следующими преимуществами:

- 1. Легкое достижение высоких температур, так как энергия выделяется непосредственно в нагреваемом металле.
- 2. Отсутствие соприкосновения с топливом или электродами, что позволяет получать металл и сплавы, чистые по химическому составу.
- 3. Наличие интенсивного перемешивания расплавленного металла под воздействием электродинамических сил, что способствует получению однородного химического состава без применения механических перемешивающих устройств.

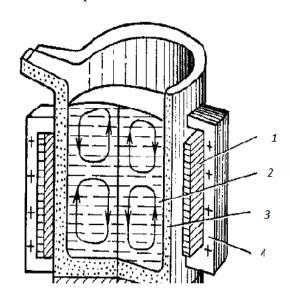


Рис.3.5. Индукционная тигельная печь с наружным магнитопроводом:

- 1 индуктор, 2 нагреваемый элемент,
- 3 огнеупорный тигль, 4 внешний магнитопровод

- 4. Малая окисляемость и небольшой угар компонентов состава из-за наличия более холодного шлака на поверхности зеркала расплавленного металла.
- 5. Возможность проведения плавки в вакууме и нейтральной среде для получения сплавов высокого качества.
- 6. Отсутствие перегрева футеровки печи, что повышает срок ее службы.
- 7. Возможность работы в периодическом режиме, что уменьшает простои печи на холостом ходу и дает возможность смены химического состава выплавляемых сплавов без проведения промывных плавок и без оставления несливаемого остатка металла.
- 8. Более простая по сравнению с канальными печами конструкция огнеупорного тигля.

Недостатками индукционных тигельных печей являются: относительно низкая температура шлаков; вспучивание поверхности расплавленного металла (мениск) изза больших электродинамических сил, возникающих в расплаве; необходимость для печей малой и средней емкости источников питания высокой и средней частоты. Индукционная тигельная печь (рис. 3.5) состоит из следующих основных элементов: индуктора 1, подключаемого к источнику переменного тока; нагреваемого металла 2; огнеупорного тигля 3 для размещения расплавляемого металла; внешнего магнитопровода 4, применяемого в некоторых печах средней частоты и в печах большой емкости промышленной частоты для экранировки кожуха печи (для уменьшения потерь энергии); устройства для слива металла; токоподводов.

Принцип работы печи основан на поглощении электромагнитной энергии материалом загрузки, размещенной в тигле печи. Нагрев и расплавление металлической шихты происходят вследствие наведения электрического тока путем электромагнитной индукции от магнитного поля, создаваемого индуктором, подключенным к источнику переменной ЭДС.

При прохождении тока в кусках шихты происходит разогрев их до оплавления и образования жидкой ванны. При получении жидкой ванны наибольшая плотность тока имеет место на периферии металлической загрузки в слое, прилегающем к стенкам тигля, а наименьшая — в центральной части загрузки. Почти вся поглощаемая энергия выделяется в слое металла, толщина которого равна глубине проникновения тока $\Delta_{\mathfrak{I}}$ гор. Выделение энергии зависит от частоты тока, геометрических соотношений диаметра тигля и диаметра индуктора, размеров и электрофизических свойств шихтового материала.

Ориентировочно минимальную частоту тока f_{\min} , Γ ц, определяют в зависимости от диаметра тигля d_0 , м, с учетом удельного электрического сопротивления $\rho_{\text{гор}}$, Ом·м, горячего металла, доведенного до расплавления:

$$f_{min} = 25 \cdot 10^6 \rho_{\text{rop}} / d_0^2. \tag{3.3}$$

Рассмотрим конструкцию основных элементов тигельных печей. *Индуктор* выполняют из медной водоохлаждаемой трубки круглого, квадратного или прямоугольного сечения.

Обычно индукторы выполняют однослойными из нескольких катушек, имеющих раздельное водяное охлаждение.

Тигли могут быть электропроводящими (из электропроводящих материалов — стали, графита) или неэлектропроводящими (из керамических материалов). Электропроводящие тигли применяют для улучшения КПД печи при нагреве металлов и сплавов с малым удельным электросопротивлением. Толщина тиглей из стали лежит в пределах 20–40 мм, графитовых — 30–70 мм. Графитовые тигли применяют для плавки меди и алюминия, стальные — для плавки магния. Электропроводящий тигель закрепляется с помощью уголков и полос, приваренных к тиглю и кожуху печи в нескольких местах по окружности тигля и соединяемых между собой болтами с изолирующими втулками и шайбами. Между тиглем и индуктором предусматривают огнеупорный и теплоизоляционный слои из шамотной и диатомитовой крупки и асбестового картона.

Магнитопроводы применяют для экранировки магнитных полей с целью уменьшения электрических потерь в кожухе или каркасе печи. Магнитопроводы представляют собой пакеты прямоугольной формы, набранные из листов электротехнической стали с толщиной листов 0,5 или 0,35 мм и скрепленных между собой болтами с изоляционными втулками.

Kожух (корпус) печи предназначен для крепления индуктора и тигля. Для небольших печей (емкостью 0,1-0,5 т) применяют кожух из неметаллических материалов – дерева, асбестоцементных плит, брусков текстолита и т. п., а также из немагнитной стали и цветного металла (бронзы, латуни).

3.6. Электрооборудование и схемы питания индукционных тигельных печей

Индукционные тигельные печи емкостью более 2 т и мощностью свыше $1000~{\rm kBT}$ питаются от трехфазных понижающих трансформаторов с регулированием вторичного напряжения под нагрузкой, подключаемых к высоковольтной сети промышленной частоты. Печи выполняют однофазными, и для обеспечения равномерной нагрузки фаз сети в цепь вторичного напряжения подключают симметрирующее устройство, состоящее из реактора L с регулированием индуктивности методом изменения воздушного зазора в магнитной цепи и конденсаторной батареи $C_{\rm c}$, подключаемых с индуктором по схеме треугольника. Силовые трансформаторы мощностью $1000,\ 2500$ и $6300~{\rm kB\cdot A}$ имеют $9–23~{\rm crynehu}$ вторичного напряжения с автоматическим регулированием мощности на желаемом уровне.

Печи меньших емкости и мощности питаются от однофазных трансформаторов мощностью 400–2500 кВ·А; при потребляемой мощности свыше 1000 кВт также устанавливают симметрирующие устройства, но на стороне высшего напряжения силового трансформатора.

При меньшей мощности печи и питании от высоковольтной сети 6 или 10 кВ можно отказаться от симметрирующего устройства, если колебания напряжения при включении и выключении печи будут находиться в допустимых пределах. Схема питания печи промышленной частоты приведена на рис. 3.6. Печи снабжаются регуляторами электрического режима АРИР, которые в заданных пределах обеспечивают поддержание напряжения, мощности P_{Π} и соз \prod_{Π} путем изменения числа ступеней напряжения силового трансформатора и подключения дополнительных секций конденсаторной батареи. Регуляторы и измерительная аппаратура размещены в шкафах управления.

Печи малой и средней емкости питаются от машинных или тиристорных преобразователей частоты. Преобразователи представляют собой равномерную нагрузку трехфазной сети, так что симметрирующие устройства не требуются.

Машинные преобразователи серии ВПЧ имеют мощность от 12 до 100 кВт, серии ВЭП – 60 и 100 кВт и частоту 2400 и 8000 Гц; преобразователи серии ОПЧ имеют мощность 250, 320, 500 кВт и частоту 2400, 4000, 8000 и 10 000 Гц. Эти преобразователи имеют однокорпусное вертикальное исполнение. Преобразователи большей мощности серии ОПЧ – двухкорпусные, горизонтального исполнения, с водяным охлаждением, мощностью 1000, 1500 и 2500 кВт и частотой 500 и 1000 Гц. Тиристорные преобразователи имеют мощность от 100 до 3200 кВт (например, СЧИ-100/3 и ТПЧ-800-1 мощностью 100 кВт, 3 кГц и 800 кВт, 1 кГц соответственно).

Для компенсации реактивной мощности печей промышленной частоты предназначены косинусные конденсаторы типов КМ и КС (масляные и совтоловые) мощностью от 14 до 75 квар и напряжением от 0,22 до 1,05 кВ, а для средних частот – типов ЭМВ и ЭСВ с водяным охлаждением мощностью от 70 до 400 квар, напряжением 0,375–2,0 кВ и со стандартными частотами среднечастотного диапазона.

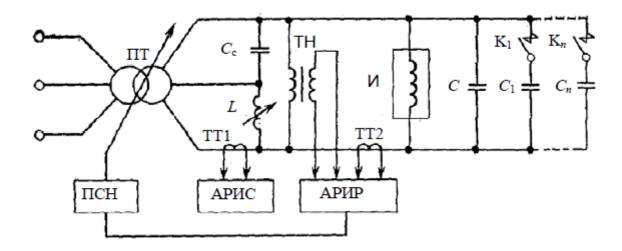


Рис. 3.6. Схема питания индукционной тигельной печи от силового трансформатора ПТ с симметрирующим устройством

и регуляторами режима печи: $\begin{aligned} \Pi CH - \text{переключатель ступеней напряжения; } C_c - \text{симметрирующая емкость; } L - \text{реактор симметрирующего устройства; } C-C_n - \text{компенсирующая конденсаторная батарея; } \\ U - \text{индуктор печи; } APUC - \text{регулятор симметрирующего устройства; } \\ APUP - \text{регулятор режима; } K_1 - K_n - \text{контакторы управления емкостью батареи } C_1 - C_n; \\ TT1, TT2 - \text{трансформаторы тока} \end{aligned}$

Для компенсации реактивной мощности печей промышленной частоты предназначены косинусные конденсаторы типов КМ и КС (масляные и совтоловые) мощностью от 14 до 75 квар и напряжением от 0,22 до 1,05 кВ, а для средних частот – типов ЭМВ и ЭСВ с водяным охлаждением мощностью от 70 до 400 квар, напряжением 0,375–2,0 кВ и со стандартными частотами среднечастотного диапазона.

3.7. Индукционный нагрев под термообработку

Индукционной поверхностной закалке подвергают трущиеся поверхности стальных деталей для уменьшения их износа при эксплуатации. Поверхностную закалку проводят для увеличения твердости в поверхностном слое до значения 56–62 *HRC* по шкале А в зависимости от технологических требований.

Индукционная поверхностная закалка заключается в интенсивном нагреве поверхностного слоя детали из стали или чугуна током высокой или средней частоты до температур выше точки магнитных превращений и в быстром охлаждении нагретого слоя в водяной, масляной или (для некоторых марок сталей) воздушной среде.

Преимуществом индукционной закалки является ускорение процесса термообработки в десятки раз по сравнению с печным сквозным нагревом (в газовых печах, печах сопротивления, соляных ваннах и др.) благодаря большой концентрации энергии именно в слое определенной глубины и длины, подлежащем упрочнению.

По конструкции закалочного устройства и способу подачи охлаждающей жидкости различают в основном два способа индукционной поверхности закалки — одновременную и непрерывно-последовательную. Одновременная закалка заключается в одновременном нагреве всей закаливаемой поверхности детали или отдельного ее участка до закалочной температуры и затем — одновременном охлаждении нагретой поверхности охлаждающей жидкостью.

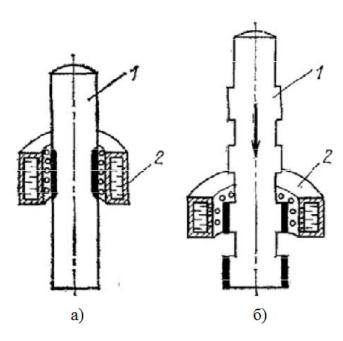


Рис.3.7. Виды поверхностей закалки: а - одновременная, б - поочередная; 1 - деталь, 2 - индуктор

Обычно охлаждающую воду подают через отверстия в активном витке (рис. 3.7, a, δ) индуктора после выдержки времени нагрева, в течение которой происходит разогрев поверхности детали. При использовании масла в качестве охлаждающей среды деталь после нагрева сбрасывают в масляный бак.

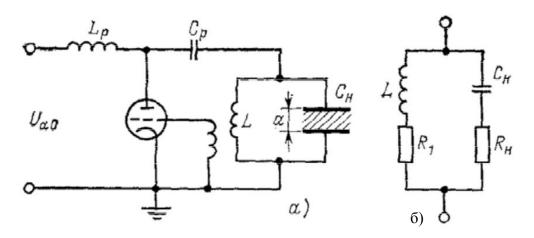
Непрерывно-последовательная закалка заключается в последовательном нагреве и охлаждении поверхности детали при поступательном ее движении относительно индуктора (или индуктора относительно детали) при необходимости закалки поверхности большой площади и сравнительно небольшой мощности источника питания. Виды поверхностной закалки представлены на рис. 3.7.

3.8. Высокочастотные установки для нагрева полупроводников и диэлектриков

Высокочастотные установки диэлектрического нагрева используются для тепловой обработки полупроводников и диэлектриков (сушки волокнистых материалов и лакокрасочных поверхностей, пайки и сварки пластиков, варки плодов и ягод, консервирования пищевых продуктов, биологического прогрева тканей с различными целями, уничтожения вредителей в зерне и т. д.).

Выпускаемые в настоящее время отечественной промышленностью установки для нагрева диэлектриков и полупроводниковых материалов делятся по назначению на четыре основные группы: для сварки термопластичных материалов, для склеивания и сушки древесины, для нагрева таблетированных пресс-порошков при изготовлении изделий из пластмасс; установки общего применения (для нагрева с различными целями разнообразных изделий и материалов).

При высокочастотном нагреве для склейки, прессования или вулканизации теплота расходуется на нагрев материала и частично — на его полимерные изменения. При размораживании и плавлении теплота расходуется как на нагрев, так и на плавление вещества, а при высокочастотной сушке — в основном на испарение влаги.


Для нагрева непроводящих материалов применяются ламповые генераторы с частотой колебательного контура от 13,56 до 81 МГц (серийные установки).

Генераторы для нагрева диэлектриков и полупроводников состоят в основном из тех же узлов, что и ламповые генераторы для индукционного нагрева металлических изделий. Отличие заключается в том, что нагрузкой является рабочий конденсатор, в котором находится нагреваемый материал. Схема генератора, в колебательный контур которого включен конденсатор с нагреваемым материалом, показана на рис. 3.8, a; при этом частота колебательного контура лампового генератора, Γ ц, определяется по формуле

$$f = \frac{1}{2\pi\sqrt{LC_{\rm H}}}.\tag{3.5}$$

Так как в процессе нагрева емкость $C_{\rm H}$ (рис. 3.8, δ) и активное сопротивление $R_{\rm H}$ изменяются, изменяется и эквивалентное сопротивление контура, а следовательно, и режим работы генератора.

Для того чтобы генератор в течение всего режима нагрева работал в неизменном диапазоне частот, нужно поддерживать неизменным эквивалентное сопротивление колебательного контура. Это достигается специальным регулированием, получившим название согласования нагрузки.

Выбор схемы зависит главным образом от необходимой частоты автоколебаний и требований к ее стабильности.

Одноконтурные схемы чаще всего используются для генерирования колебаний с частотой до 1 МГц. В этих схемах применяется, как правило, трансформаторная или автотрансформаторная связь.

Более гибкими являются многоконтурные схемы автогенераторов. Они позволяют плавно и в широких пределах регулировать эквивалентное сопротивление контура без заметного падения его КПД. Однако эти системы имеют несколько резонансных частот, в связи с чем появляется возможность перехода работы генератора с одной частоты на другую. Поэтому приходится осуществлять обратную связь от вторичного контура с индуктивной связью между контурами.

Вопросы для самопроверки

- 1. Каковы преимущества индукционного нагрева перед установками косвенного нагрева?
- 2. Каким образом можно регулировать пространственное расположение зоны протекания вихревых токов при индукционном нагреве?
 - 3. Каким образом по назначению подразделяются индукционные установки?
 - 4. Каким образом подразделяются по принципу действия индукционные печи?
 - 5. Чем отличается индукционная канальная печь от трансформатора?
 - 6. Что входит в понятие индукционной единицы при индукционном нагреве?
- 7. Что относится к электрооборудованию, схеме питания и управления канальных печей?
- 8 Что используется для однофазных печей для обеспечения равномерной нагрузки фаз сети?
 - 9. Принцип действия индукционной тигельной печи.

Раздел 4. РУЧНАЯ ДУГОВАЯ СВАРКА

4.1. Электрическая дуга

Электрическая дуга является одним из видов электрического разряда в газе или в парах. Она характеризуется малым катодным падением напряжения (10–20 В) и высокой плотностью тока, которая может достигать сотен и тысяч ампер на 1 см². Неионизированные газы и пары, состоящие из нейтральных частиц, не проводят электрический ток. В дуговом разряде газ сильно ионизирован, в нем присутствуют положительно заряженные ионы и отрицательно заряженные свободные электроны. При наложении электрического поля на дуговой промежуток заряженные частицы под его действием двигаются: положительные ионы – к катоду, а электроны – к аноду, обусловливая протекание тока через дуговой промежуток. Указанные свойства дугового разряда объясняются наличием в нем мощных источников ионизации [1].

Ионизация газа происходит в результате удаления из нейтральных частиц одного или нескольких электронов. Это удаление требует затраты энергии извне на преодоление кулоновых сил притяжения между электроном и положительно заряженным ионом. Энергия, затрачиваемая на ионизацию, различна для разных газов; она равна произведению заряда электрона на потенциал ионизации газа и для наиболее слабо связанных с молекулой электронов находится в пределах 4—25 эВ.

В дуговом разряде одним из основных путей ионизации газа является соударение частиц, вызванное их интенсивным тепловым движением. Такая *термическая ионизация* может иметь существенное значение только при очень высоких температурах в столбе дуги, где температура достигает 6000—8000 К и более. При этих температурах пары большинства металлов в значительной степени ионизированы; пары

газов для существенной термической ионизации требуют более высоких температур (15 000 К и выше).

Вторым источником (*ионизация ударом*) является столкновение электрона, ускоряющего свое движение к аноду под действием электрического поля, с нейтральной частицей. В результате такого удара, если энергия электрона достаточно велика, из нейтральной частицы выбивается внешний электрон, и частица превращается в положительно заряженный ион.

Дуговой разряд по длине можно подразделить на три области: среднюю – столб дуги, прикатодную и прианодную области. В столбе дуги потенциал растет линейно по направлению от одного конца к другому; в приэлектродных областях, протяженность которых весьма мала (порядка 10⁻⁵ см), он изменяется скачком. Эти приэлектродные области, в первую очередь прикатодная, образуют те потоки заряженных частиц, которые в столбе дуги ионизируют газ. Под действием ионов, бомбардирующих катод, он разогревается, и находящиеся в нем, как во всяком металле, свободные электроны получают такие скорости теплового движения, что оказываются в состоянии преодолеть потенциальный барьер у поверхности катода и выйти в дуговой промежуток, где они ускоряются электрическим полем и при столкновении с нейтральными частицами ионизируют их ударом. Такая термоэлектронная эмиссия требует высокой температуры катода (более 2000 К), поэтому она возможна лишь тогда, когда катод выполнен из тугоплавкого материала. Катод из менее тугоплавкого материала интенсивно испаряется, и электроны выходят из окружающего катод раскаленного облака пара.

В точке соприкосновения электрода со свариваемыми деталями по закону Джоуля — Ленца выделяется достаточно большое количество тепла. После отрыва электрода от деталей воздушный промежуток между ними разогревается, из катода начинается мощная термоэлектронная эмиссия. Воздух становится проводником электричества, что создает мощный дуговой разряд, который принято называть электросварочной дугой. В первый момент зажигания дуги, когда воздушный промежуток еще холодный, необходима большая кинетическая энергия для его ионизации. Поэтому напряжение зажигания дуги оказывается всегда больше, чем при нормальном ее горении и равно для стальных электродов 30—35 В, а для угольных 45—55 В. Электрическая дуга состоит из следующих элементов (рис. 4.1).

При угольных электродах температура анода примерно 4900 °C, температура катода зависит от длины дуги, силы тока, состава и диаметра электрода и равна 3000–4000 °C.

При стальных электродах (применяемых при сварке) температура анода -2500-2600 °C, катода -2300-2400 °C. Напряжение в электрической дуге делится на три характерные части (рис. 4.1).

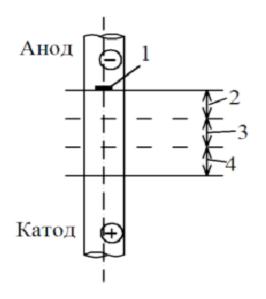


Рис. 4.1. Элементы дуги: 1 — катодное пятно, 2 — катодное пространство, 3 — столб дуги, 4 — анодное пространство.

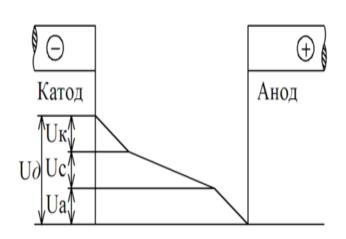
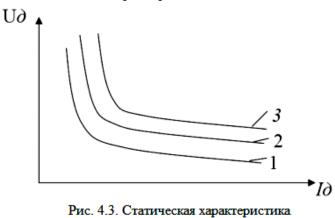



Рис. 4.2. Распределение напряжения в дуге:

- 1. Падение напряжения в катодном пространстве U_{κ}
- 2. Падение напряжения в стобе дуги U_c
- 3. Падение напряжения в анодном пространстве U_a

Статическая характеристика дуги

При токах порядка 200 А и выше падение напряжения в столбе дуги не зависит от силы тока и пропорционально длине столба, но меняется в зависимости от рода га-

электрической дуги: 1 — короткая дуга; 2 — средняя дуга; 3 — длинная дуга

за, материала электрода и давления. С увеличением тока ионизация столба дуги (вследствие нагрева газа) усиливается (рис.4.3).

С усилением ионизации возрастает проводимость столба дуги, а это приводит к уменьшению напряжения, необходимого для поддержания горения дуги с увеличением тока (отрицательное сопротивление).

Динамическая характеристика дуги

Рассмотренное выше изменение напряжения дуги с ростом тока справедливо при медленном нарастании тока (статическая характеристика). При быстрых изменениях тока (от I_1 до I_2) ионизация в промежутке отстает от роста тока, проводимость дуги увеличивается медленнее, и напряжение на дуге уменьшается меньше, чем по

статической характеристике (из точки 1 приходим в точку 2', а не в точку 2). При внезапном уменьшении тока степень ионизации промежутка снижается медленнее тока, и мы из точки 2 приходим в точку 1', а не в точку 1 (рис. 4.4). Изложенные выше явления имеют место в дуге независимо от рода тока, питающего дугу. Однако поддержание дуги на переменном токе труднее, так как ток меняет свою величину и направление 100 раз в секунду (при промышленной частоте). Изменение направления тока приводит к перемещению катодного пятна с одного электрода на другой при изменении полярности.

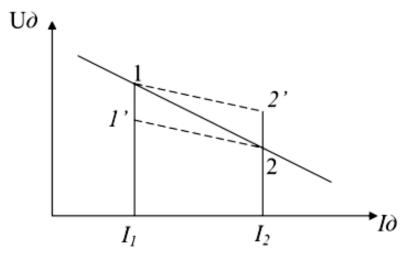


Рис. 4.4. Динамическая характеристика дуги

4.2. Ручная дуговая сварка

Источники сварочного тока делятся на *однопостовые* (питающие один сварочный пост) и *многопостовые* (обслуживающие одновременно несколько постов).

От однопостовых источников требуется:

- 1. Напряжение холостого хода источника сварочного тока должно быть не менее напряжения зажигания дуги (30–40 B для постоянного тока и 50–55 B для переменного тока);
- 2. Ток короткого замыкания в сварочной цепи не должен существенно превышать рабочий ток дуги (практически, кратность тока короткого замыкания приемлема в пределах 1,2–1,4);
- 3. Источник должен иметь регулировку тока сварочной дуги, единую для сварки деталей разной толщины.

Режим работы сварочного оборудования повторно – кратковременный с процентом включения (ПВ) равным 50–70%. Установившийся повторно – кратковременный режим характеризуется тем, что падение температуры обмотки за время перерыва соответствует повышению ее за время очередного горения. Сварочный аппарат переменного тока является сочетанием трансформатора (с вторичным напряжением 60–80 В) и регулятора напряжения (дросселя), обеспечивающего круто падающую внешнюю характеристику сварочного аппарата (рис. 4.5). Регулирование тока происходит за счет изменения воздушного зазора в магнитопроводе дросселя.

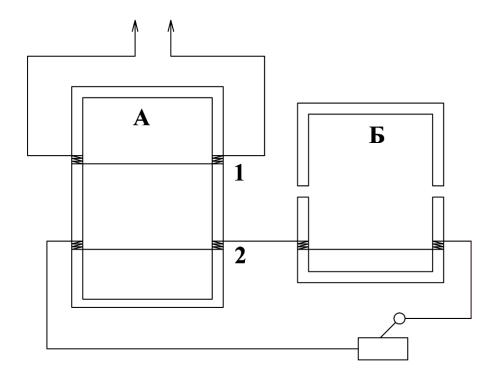


Рис.4.5. Принципиальная схема сварочного аппарата с отдельным регулятором: А – трансформатор; Б – регулятор; 1 – первичная обмотка; 2 – вторичная обмотка

Наименьший сварочный ток получается при зазоре, равном нулю, с увеличением зазора ток увеличивается. Сварочные трансформаторы имеют различные конструкции в зависимости от того, какой является сварочная операция: дуговой, стыковой, шовной или точечной. Наиболее разнообразны конструкции сварочных трансформаторов для дуговой сварки.

Сварочный трансформатор так же, как и сварочная машина постоянного тока, должен иметь достаточное для зажигания дуги напряжение холостого хода. В простейшем случае для этой цели можно было бы использовать автотрансформатор, который может дать хорошие технические и экономические показатели. Однако автотрансформаторы неприемлемы с точки зрения безопасности сварщика, так как последний может попасть под полное напряжение сети. Поэтому сварочные трансформаторы выполняются только с разделенными первичной и вторичной обмотками. Кроме того, сварочные трансформаторы должны удовлетворять следующим основным требованиям:

- 1. Иметь крутопадающую внешнюю характеристику, необходимую для устойчивого горения дуги;
- 2. Во избежание перегрева электрода и прилипания его к металлу при коротких замыканиях, величина тока короткого замыкания не должна превышать рабочий ток более чем на 35–45%;
- 3. Напряжение холостого хода не должно превышать 60 В, так как при более высоком напряжении появляется опасность поражения сварщика электрическим током;

- 4. Конструкция трансформатора должна быть проста и защищена от влияния атмосферных осадков, пыли и пр. Изоляция обмоток его должна быть влаго-устойчивой;
- 5. Трансформатор должен обеспечить постоянство горения дуги при колебании напряжения в первичной обмотке $\pm 10\%$.

Различные типы внешних характеристик сварочных трансформаторов показаны на рис. 4.6. Характеристика типа «а» пригодна для сварки на больших и на малых токах. Так как с уменьшением тока нагрузки напряжение трансформатора повышается, то вероятность неустойчивого горения дуги отпадает. Характеристика типа «б» имеет повышенное напряжение вблизи холостого хода, обеспечивающая устойчивое горение дуги при малых токах нагрузки. Однако при сварке на больших токах нагрузки это напряжение будет излишне высоким. Еще менее благоприятна характеристика типа «в».

Таким образом, из всех приведенных типов характеристик наиболее благоприятной является характеристика типа «а». Для получения требуемой внешней характеристики сварочные трансформаторы выполняются с относительно большим переменным рассеянием в самом трансформаторе или в отдельном реакторе, включаемом в цепь последовательно с трансформатором.

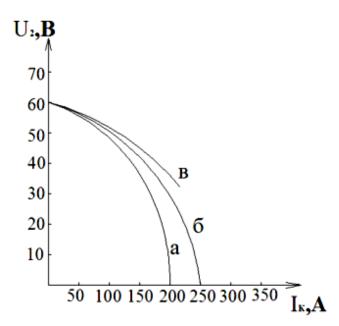


Рис.4.6. Различные типы внешних характеристик сварочного трансформатора: а - сварка на больших и на малых токах; б - повышенное напряжение вблизи холостого хода; в - сварка на больших токах нагрузки.

С помощью ручной сварки выполняются многообразные операции соединения деталей в приспособленных для этой цели цехах, а также непосредственно на конструкциях и стройплощадках. Это обусловило специфические требования к применяемому оборудованию и технологии сварки. Сварочные агрегаты переносного исполнения снабжены сварочными проводами соответствующего сечения.

Например, длина провода марки ПРГ (провод резиновый гибкий) или ПРГН (провод резиновый гибкий нейритовый), сплетенного из большого количества

отожженных и облуженных проволочек диаметром 0,18–0,22 мм, не должна быть более 30 м, так как чрезмерная его длина вызывает значительные электрические потери и снижает КПД сварочного аппарата.

Электродержатели при всех технологических приемах надежно удерживают электроды диаметром 0,3–6 мм, приготовленные из холоднотянутой или горячекатаной проволоки, материал которой соответствует материалу свариваемых деталей.

Обозначение марки сварочной проволоки может состоять из цифры, соответствующей ее диаметру в милиметрах, букв Св, означающих «сварочная», цифр, показывающих содержание углерода, и буквенных обозначений компонентов, входящих в состав проволоки (например 2 Св–08 ГС). Например, для сварки алюминия и его сплавов применяется проволока марок СвАМц, СвАМ6, АЛ9 и др.; для сварки меди и ее сплавов – проволока М1, М2; для сварки бронзы – проволока БрКМц3-1; латуни – проволока Л63, Л60-1 и др.

Проволоки для механизированной сварки имеют маркировку, состоящую из букв: Э – электродная, O – омедненная, Ш – электрошлаковая, BД – воздушнодуговая, BИ – вакуум-индукционная.

Электроды классифицируются в зависимости от материала, из которого они изготовлены, металла, для сварки которого они предназначены, от количества покрытия, нанесенного на стержень, от химического состава стержня и покрытия, характера шлака, образующего при расплавлении покрытия.

Название электрода для сварки конструкционных сталей состоит из обозначения марки электрода, типа электрода, диаметра стержня, типа покрытия и номера ГОСТа.

Например, УОНИ-13/45-Э42F-4,0Ф ГОСТ 9497-90 расшифровывается так: УОНИ-13/45 — марка электрода; Э42A — тип; 4,0-Ф — диаметр и покрытие электрода.

Силу сварочного тока выбирают в зависимости от марки и диаметра электрода, при этом учитывают положение шва в пространстве, вид соединения, толщину и состав свариваемого металла, температуру окружающей среды. При этом необходимо работать на максимально возможном токе. Ток для электродов выбирают, исходя из соотношений

$$I_{\rm CB} = 50d_{\scriptscriptstyle {\rm 3Л}}; \qquad I_{\rm CB} = (20 + 6d_{\scriptscriptstyle {\rm 3Л}})d_{\scriptscriptstyle {\rm 3Л}}.$$

Режим сварки металлов разной толщины и свойств определен в специальных руководствах, а качество сварочных работ в большой степени зависит от квалификации сварщика.

Вопросы для самопроверки

- 1. Изложите процесс возникновения электрической сварочной дуги.
- 2. Почему напряжение зажигания дуги всегда больше, чем при нормальном ее горении?
 - 3. Из каких основных элементов состоит электрическая дуга?
 - 4. Назовите основные характеристики электрической дуги.
- 5. Как влияет индуктивность в цепи переменного тока на устойчивость горения дуги?

- 6. Назовите основные требования, предъявляемые к однопостовым источникам сварочного тока.
- 7. Назовите основные требования, которым должны удовлетворять сварочные трансформаторы.
- 8. Объясните, почему однопостовые источники сварочного тока должны иметь круто падающую внешнюю характеристику, а многопостовые жесткую внешнюю характеристику?
- 9. Какими способами обеспечивается падающая внешняя характеристика у однопостового сварочного генератора?
- 10. Каким образом осуществляется падающая внешняя характеристика у однопостовых сварочных трансформаторов?

Раздел 5. ЭЛЕКТРОДУГОВЫЕ ПЕЧИ И УСТАНОВКИ

5.1. Электродуговые печи, их классификация

Электродуговые печи применяются в металлургической, химической, машиностроительной и ряде других отраслей промышленности. Они могут быть классифицированы следующим образом [3].

Дуговые печи косвенного действия. Электродуговой разряд горит между электродами, расположенными над нагреваемым материалом, и теплообмен между электрической дугой и материалом осуществляется в основном за счет излучения.

Дуговые печи прямого действия. В них электрическая дуга горит между концами электродов и нагреваемым материалом. Нагрев материала осуществляется при выделении энергии в опорных пятнах дуги, протекании тока через расплав, а также за счет излучения плазмы дуги, конвекции и теплопроводности.

Дуговые печи сопротивления. В них дуга горит под слоем электропроводной шихты; теплота выделяется в дуговом разряде и преимущественно при прохождении тока через шихту в расплавленных материалах. Передача теплоты в объем печи осуществляется за счет теплопроводности, излучения и в меньшей мере конвекции.

Из числа дуговых печей можно выделить *вакуумные дуговые печи*. В них электрическая дуга горит в инертном газе или парах переплавляемого материала при низком давлении между расходуемым электродом, изготовленным из переплавляемого металла, и ванной жидкого металла либо между нерасходуемым электродом и ванной жидкого металла.

Приведенную классификацию необходимо дополнить широко внедряемыми в настоящее время *плазменными печами* или *плазменно-дуговыми плавильными установками*. В этих установках нагрев металла осуществляется электрической дугой, совмещенной со струей плазмы инертного газа. Это позволяет исключить засорение переплавляемого металла материалом электрода, увеличить интенсивность передачи энергии на ванну печи.

Дуговая печь косвенного действия

Предназначена для переплава цветных металлов и их сплавов, а также для выплавки некоторых сортов чугуна и никеля. Ее основное преимущество – небольшой угар металла, так как электродуговой разряд не соприкасается непосредственно с переплавляемым материалом. Однофазная дуговая печь косвенного действия (рис. 5.1)

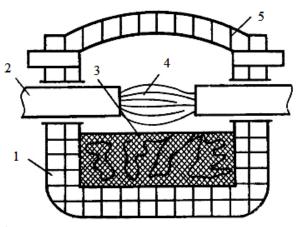


Рис. 5.1. Схема дуговой печи косвенного действия: 1 - ванна; 2 - электроды; 3 - переплавляемый материал; 4 - электрическая дуга; 5 - корпус

представляет собой горизонтально расположенную ванну, футерованную изнутри огнеупором 1. В противоположных боковых стенках ее установлены электроды 2, перемещаемые по мере обгорания механизмами подачи. Переплавляемый материал 3 загружают на дно ванны через отверстие в боковой поверхности корпуса 5. На электроды подается напряжение, затем они сводятся до соприкосновения и возникновения тока в цепи и затем разводятся, что приводит к возникновению электрической дуги 4. Вследствие поглощения выделяемой дугой энергии происходит нагрев и расплавление металла. После рас-

плавления металла печь наклоняется механизмом наклона и из нее сливается расплав. Регулирование мощности печи производится с помощью источника питания за счет изменения тока дуги, а также ее длины при сближении и удалении электродов.

К электрооборудованию дуговых печей косвенного действия относятся печной трансформатор, регулировочный реактор и электропривод механизма подачи электродов.

Ток к электродам подводится по гибким кабелям от печной трансформаторной подстанции. Регулирование расстояния между электродами осуществляют с помощью электропривода, управляемого персоналом дистанционно, или автоматическим регулятором режима.

Дуговые печи косвенного действия производят емкостью 0,25 и 0,5 т. В них применяются графитизированные электроды. Они снабжены трансформаторами мощностью 175-250 и 250-400 кВ·А.

Дуговая печь прямого действия

Основное назначение дуговой печи прямого действия (рис. 5.2) — выплавка стали в слитки для последующего передела в прокатных цехах, а также для фасонного литья на машиностроительных заводах; получение металлургического сырья, химических продуктов.

Дуговая стального кожуха, имеющего цилиндрическую, расширяющуюся или ступенчатую форму 1. Внутри кожуха располагается огнеупорная футеровка 2. Поверх футерованного кожуха печи расположен свод печи 3, через который пропущены электроды 4. Для зажигания дуги электроды вначале опускаются до соприкосновения с расплавляемым материалом, а затем немного поднимаются до возбуждения дуги 6. В процессе плавки электроды перемещаются с помощью механизма подъема электродов 5. Каждая печь имеет рабочие окна и сливное отверстие. Через рабочее окно производится загрузка печи, а через сливное

отверстие – ее выгрузка. Иногда печь загружается сверху при снятом или отодвинутом своде. Слив готового металла производится путем наклона печи.

выравнивания химического состава и температуры расплавляемого металла в печах большой емкости имеются электромагнитные устройства для перемешивания расплава.

Электродуговая печная установка снабжена механизмами наклона печи для слива металла, подъема и отворота свода, перемещения электродов. Они могут иметь электромеханический или гидравлический привод. Электроды крепятся в специальных электрододержателях, которые связаны с механизмом перемещения электродов. Ток подводится к электродо-

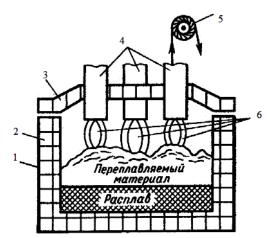


Рис 5.2. Схема дуговой сталеплавильной печи: 1 - стальной кожух, 2 -огнеупорная футеровка, 3 - свод печи, 4 - электроды, 5 - механизм подъема электродов, 6 - электрическая дуга.

держателю с помощью пакета медных шин или водоохлаждаемых труб. Процесс выплавки электростали в дуговой печи состоит из следующих опера-

ций: расплавление скрапа, удаление содержащихся в нем вредных примесей и газов, раскисление металла, введение в него нужных легирующих компонентов, рафинирование, выливание металла в ковш для последующей разливки.

Под действием развивающейся в опорном пятне дуги температуры скрап расплавляется и жидкий металл стекает в подину. В шихте образуются колодцы, в которые углубляются опускающиеся электроды до тех пор, пока они не достигнут поверхности расплавленного металла на подине печи.

Расплавление скрапа и шихты приводит к повышению уровня расплавленного металла, и для предотвращения короткого замыкания электроды поднимаются. Характерной особенностью периода расплавления является неспокойный режим горения дуги. Горящая между концом электрода и холодным металлом дуга нестабильна, длина ее меняется в широких пределах при обвалах и перемещениях скрапа (от короткого замыкания до обрыва дуги). Длительность периода расплавления зачастую составляет более половины всего процесса и при этом расходуется 60-80% всей электроэнергии. Период расплавления считается законченным, когда весь металл в ванне печи перешел в жидкое состояние.

Удаление примесей происходит следующим образом. Вследствие сравнительно низкой температуры ванны в ней интенсивно идут эндотермические реакции окисления железа, кремния, марганца и фосфора. Оксиды всплывают и образуют на поверхности расплава вместе с вводимой известью слой шлака, который имеет в своем составе легкоионизирующиеся компоненты (более низкая работа выхода электрона) по сравнению с расплавленным металлом, поэтому, несмотря на значительное удлинение, дуга здесь горит устойчиво. В шлаке оксиды кремния соединяются с закисью железа и марганца, образуя соответствующие силикаты. Для интенсификации этих процессов в ванну добавляют железную руду или вдувают кислород. При этом углерод металла восстанавливает руду. Образующийся оксид углерода пузырьками всплывает – происходит так называемое «кипение», или «кип», ванны. Важной стадией процесса является рафинирование металла.

В конце периода расплавления для окончательного доведения состава металла до требуемого в него вводят легирующие добавки и приступают к разливке. Плавка в крупных печах длится 4–6 ч: из них 1,5–2,5 ч длится расплавление и 2–4 ч – окисление и рафинирование металла. В зависимости от вида скрапа, шихты, состава футеровки, применения легирующих компонентов режимы работы печи и стадии технологического процесса могут быть различными. Поэтому к конструкции дуговой печи, ее элементам и схеме электроснабжения предъявляют особые требования.

- 1. Возможность гибкого управления мощностью, поскольку в начальный период необходима максимальная мощность, чтобы ускорить процесс расплавления. В другие периоды нужно иметь возможность изменять мощность для управления температурами металла и шлака.
 - 2. Поддержание в печи восстановительной атмосферы.
- 3. Быстрая реакция электрооборудования печи на частые короткие замыкания и обрывы дуги в период расплавления, возможность ограничивать ток короткого замыкания до безопасных значений, ликвидировать все отступления от нормального электрического режима в кратчайшее время. Нарушение нормального режима происходит, как правило, по фазам. Поэтому каждый электрод печи должен быть оснащен механизмами подъема и опускания с автоматическим регулированием.

Дуговые сталеплавильные печи являются трехфазными и имеют подину из непроводящего материала. Ванна с металлом в такой печи образует естественную нулевую точку трехфазной цепи, и печь оказывается включенной по трехпроводной системе трехфазного тока без нулевого провода.

Электроды в дуговых печах служат для ввода электроэнергии в зону ее потребления, для расплавления шихты и получения необходимых материалов. Электроды подразделяют на нерасходуемые и расходуемые. Основные требования, предъявляемые к ним: достаточная механическая прочность, способность выдерживать высокие температуры, низкое активное сопротивление. В дуговых печах применяются непрерывно наращиваемые графитизированные электроды. Они имеют круглое сечение и обработанные торцы, по оси которых имеются отверстия с резьбой. В отверстия ввинчены ниппели, выполненные из материала электрода, до половины своей длины. На выступающую из торца электрода половину ниппеля навинчен следующий электрод и т. д. Таким способом изготавливается электродная свеча, состоящая из нескольких электродов.

В зависимости от диаметра электроды изготавливают длиной 1000—1800 мм. По мере обгорания в печи нижней части свечи электродов она опускается вниз с помощью механизмов перемещения. Когда электрододержатель подходит к своду печи, производится наращивание и перепуск электродов.

Графитизированные электроды изготавливают из искусственного электрографита в специальных электрических печах. Несмотря на то, что они дороже угольных, в современных печах в подавляющем большинстве применяются графитизированные электроды. Основное их достоинство – меньшее удельное сопротивление.

Иногда применяемые графитоугольные электроды диаметром 100–1200 мм изготавливают из антрацита, термоантрацита (прокаленного антрацита), нефтяного кокса, каменноугольного пека и смолы в специальных печах путем обжига заготовок без доступа кислорода при температуре до 1600 К.

В нашей стране в эксплуатации находятся дуговые печи для выплавки стали емкостью до 200 т, питаемые от трансформаторов мощностью до 80 МВ·А.

При повышении мощности печи значительно снижается расход энергии на выплавку 1 т металла, что определяет тенденцию укрупнения печных установок.

Электрооборудование дуговых печных установок

Электродуговая печь (ДСП) представляет собой мощный энергопотребитель, относящийся ко второй категории по надежности электроснабжения. Электрооборудование и схемы электроснабжения ДСП имеют ряд особенностей.

Основное электрооборудование дуговых печных установок (рис. 5.3) включает печь с электродами и ванной, в которой горят дуги и находится перерабатываемый материал; отдельный для каждой печи понизительный трансформатор, вместе с которым часто размещены дроссели; короткую сеть, соединяющую вторичные выводы трансформатора с электродами печи; коммутационную, измерительную и защитную аппаратуру.

В печных установках применяются трансформаторы и дроссели, выполненные в виде отдельных аппаратов, а также трансформаторы с встроенными дросселями.

В дуговых электропечных установках различают главную и вспомогательные цепи тока (рис. 5.3).

Главная цепь тока включает основное электрооборудование и электрические дуги печи. К вспомогательным относятся цепи управления, измерения и защиты, автоматики и т. п.

В главной цепи различают первичную и вторичную стороны. Первичная цепь состоит из последовательно соединенных проводов и аппаратов высокого напряжения, дросселя и первичной обмотки печного трансформатора. Вторичная цепь состоит из последовательно соединенных вторичной обмотки трансформатора, токопроводов короткой сети, электродов и электрических дуг. Все части цепи, расположенные вне печи, получили общее название подводящей сети.

Короткой сетью называют токопровод от выводов вторичной стороны трансформаторов до электродов дуговой печи

По короткой сети идут очень большие токи (до 100 кА и выше), поэтому токопроводы короткой сети имеют большое сечение и выполнены в виде пакетов медных лент, медных шин или водоохлаждаемых труб.

Короткая сеть состоит из участков жесткозакрепленных шинопроводов и гибких проводов, соединяющих концы шинопроводов с передвигающимися во время работы печи электродами.

Подвод питающей линии высокого напряжения от ввода производится через разъединители и выключатели высокого напряжения, установленные вместе с защитными аппаратами в распределительном устройстве электропечной установки.

Электроснабжение трансформаторов печной подстанции производится от сети 6,10–35 кВ, а для мощных подстанций – 110 кВ. Присоединение измерительных и защитных приборов к проводам высокого напряжения производится через трансформаторы тока и напряжения.

Для поддержания наивыгоднейшего режима печи устанавливаются автоматические регуляторы мощности печи. Такие регуляторы воздействуют на механизм передвижения электродов, изменяют длину дуги и поддерживают заданное значение мощности дуговой печи. Для повышения точности регулирования в системы управления вводятся вычислительные машины.

Печные трансформаторы предназначены для питания электродуговых печей. Для печей небольшой и средней мощности трансформаторы выполняют трехфазными. Для печей большой мощности применяются группы однофазных трансформаторов, которые позволяют получить повышенный коэффициент мощности за счет более рациональной конструкции короткой сети и регулировать независимо мощности и напряжения каждой фазы. Печные трансформаторы имеют следующие особенности:

- высокое значение номинального тока на стороне низкого напряжения (до десятков и сотен килоампер);
- большой коэффициент трансформации (напряжение с 6, 10, 35, 110 кВ трансформируется до нескольких сотен вольт);
- число ступеней напряжения и диапазон его регулирования гораздо больше, чем у силовых трансформаторов (напряжение регулируется примерно на 500% при числе ступеней до 40 и более);
- трансформаторы обладают высокой стойкостью против эксплуатационных коротких замыканий с кратностью тока (2,5-3) I_{HOM} ,
 - трансформаторы имеют высокую механическую прочность.

Мощные печные трансформаторы оборудованы установками принудительного охлаждения с искусственной циркуляцией масла через теплообменник. Они снабжены регуляторами напряжения под нагрузкой, производящими 100–160 переключений в сутки.

Обмотки трехфазных трансформаторов соединяются по схеме «треугольник—треугольник» с возможностью переключения по схеме «треугольник—звезда», что позволяет регулировать вторичное напряжение.

Регулирование режимов работы печи и ее электрических характеристик осуществляется изменением напряжения за счет изменения числа включенных в сеть витков первичной обмотки трансформаторов с помощью переключателя ступеней.

Переключение ступеней напряжения печных трансформаторов малой и средней мощности осуществляется при снятой нагрузке. Для этого переключатель снабжают блокировкой с главным высоковольтным выключателем. В трансформаторах большой мощности переключение осуществляется под нагрузкой специальным переключателем, установленным на крышке трансформатора. Трансформаторный агрегат включает в себя регулирующий автотрансформатор с обмотками грубой и тонкой регулировки и главный трансформатор с первичной и вторичной обмотками. На первичную обмотку главного трансформатора напряжение сети подается на первой ступени полное, а на остальных ступенях — его определенная доля, которая зависит от положения контактов избирателя переключающего устройства.

Разъединители в схемах электроснабжения дуговых печных установок служат для создания видимого разрыва силовой цепи электропечи. Коммутация цепи разъединителем осуществляется только при отключенном высоковольтном выключателе.

Высоковольтные выключатели совместно с аппаратурой защиты предохраняют печь от токов короткого замыкания и осуществляют оперативное отключение и выключение печи. В существующих печах применяются масляные многообъемные и воздушные выключатели. Для печных установок напряжением 6 или 10 кВ используются выключатели типа ВМБ-10; для установок напряжением 35 кВ — масляные выключатели типа ВМД-35-600. В последнее время при напряжениях 35 и 110 кВ все чаще применяются воздушные и вакуумные выключатели.

Предусмотрено аварийное отключение печного трансформатора, которое срабатывает при недопустимых токах в первичной обмотке трансформатора, а также при поступлении сигнала от газовой защиты трансформатора или переключателя напряжения.

Дроссель, или реактор, служит для ограничения бросков тока при эксплуатационных коротких замыканиях и стабилизации горения дуг за счет создания падающей характеристики цепи питания. У работающих непрерывно дуговых печей режим работы дросселя прерывистый, условия его работы тяжелые, поэтому он должен удовлетворять повышенным требованиям термической и механической прочности.

Дроссель включается между сетью и линейными зажимами обмотки высокого напряжения трансформатора или в «фазу» — последовательно с данной обмоткой. Чаще всего дроссель располагают в общем кожухе с печным трансформатором.

Короткая сеть дуговых печей служит для передачи электрической энергии от вторичной обмотки трансформатора в рабочее пространство печи. Несмотря на небольшую длину короткой сети, ее активное и особенно индуктивное сопротивление является одним из определяющих составных частей общего сопротивления участков печной установки. Они оказывают существенное влияние на энергетические показатели работы печи: мощность, коэффициент мощности, энергетический КПД и т. д.

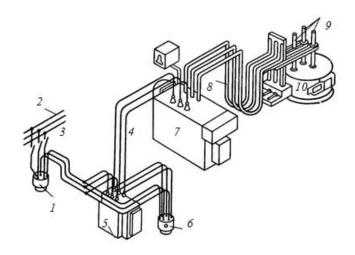


Рис. 5.3. Схема электропечной установки:

1, 6 – выключатели; 2 – высоковольтные шины; 3 – разъединитель;

4 – высоковольтная сеть; 5 – реактор; 7 – печной трансформатор;

8 – короткая сеть; 9 – электроды; 10 – электродуговая печь

Короткая сеть должна иметь минимальную длину и наиболее рациональное расположение проводников для снижения индуктивности, равномерной загрузки фаз и проводников в фазах током (рис.5.4, a– ϵ).

В короткой сети выделяются четыре основных участка: шинные пакеты (от выходов низкого напряжения печного трансформатора до неподвижных башмаков), гибкая часть (участок гибких кабелей), трубошины (от подвижных башмаков до головок электрододержателя), электроды.

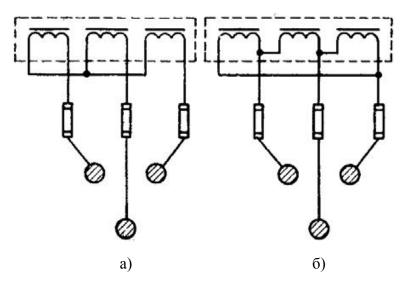


Рис. 5.4. Схемы соединения вторичных токопроводов ДСП: a-b «звезду», $\delta-b$ «треугольник»

В печных дуговых установках необходимы защиты от токов перегрузки и аварийного короткого замыкания. Защиту от перегрузок обычно обеспечивают на сторо-

не низкого напряжения с помощью максимальных реле с зависимой выдержкой времени. Защита от токов аварийного короткого замыкания осуществляется с помощью максимальных реле мгновенного действия на стороне высокого напряжения.

Уставку мгновенных реле выбирают так, чтобы они не реагировали на токи эксплуатационных коротких замыканий (2-2,5) $I_{\rm H}$, поэтому уставку защиты выбирают равной $5I_{\rm H}$. Защита от перегрузки имеет выдержку времени 5-10 с, т. е. включает значительное время работы автоматики, ликвидирующей аварийный режим.

Дуговые сталеплавильные печи в системе электроснабжения

Как потребители электрической энергии, дуговые сталеплавильные печи (ДСП) относятся ко второй категории по надежности электроснабжения, характеризуются высокой единичной мощностью 0,4–80 МВ·А, имеют коэффициент мощности от 0,85–0,89 (ДСП-5) до 0,7 (ДСП-200), круглосуточный резкопеременный циклический режим работы. Рабочий элемент ДСП – электрическая дуга – является нелинейным активным сопротивлением, параметры ее сильно зависят от условий горения.

Регулирование мощности дуги производится индуктивными элементами питающей сети, изменением подводимого напряжения и длины дуги. В период расплавления печь работает с максимальной мощностью и расходует 50–80% всей потребляемой на плавку энергии. Мгновенная мощность колеблется вокруг определенного среднего значения, задаваемого автоматическим регулятором. Колебания реактивной мощности достигают 200% со скоростью до 500 мвар/с и значительно превышают колебания активной мощности. В этот период происходят частые эксплуатационные короткие замыкания за счет замыкания электродов обваливающейся шихтой или жидким металлом. В осциллограмме тока наблюдаются несинусоидальность, броски тока разной амплитуды и продолжительности, носящие случайный характер, высшие гармоники.

Индивидуальные графики печи имеют большую неравномерность, объясняемую технологическими снижениями мощности и отключениями печи. Здесь же наблюдается статическая и динамическая несимметрии нагрузки фаз, достигающие 10 % колебания токов, вызывающие колебания напряжения в питающей сети, отрицательно влияющие на работу других потребителей — ЭВМ, телевизоров, освещения и др. Для уменьшения вредного влияния ДСП на работу электрической сети применяются организационно-технические мероприятия технологического и электроэнергетического характера: автоматическое регулирование тока и компенсация реактивной мощности, уменьшение колебания напряжения по фазам, фильтрация высших гармоник.

К технологическим мероприятиям следует отнести: сортировку и подготовку скрапа, равномерную его загрузку, использование качественных электродов, использование вместе со скрапом обогащенной и частично восстановленной железной руды в виде окатышей.

Со стороны питающей сети в соответствии с требованиями ГОСТ 13109–67 на качество электроэнергии должны быть приняты следующие меры: применение повышенного напряжения 110–220 кВ; применение глубоких вводов ЛЭП на террито-

рию промышленных предприятий; подключение печи в точке с большой мощностью короткого замыкания.

Применяемые схемные решения для питания индивидуальных печей и цехов предусматривают связь с другими потребителями лишь на напряжении 110–220 кВ.

5.2. Рудно-термические печи

В рудно-термических (рудо-восстановительных) печах проводят восстановительные электротермические процессы, с помощью которых получают чистые металлы или сплавы металлов из руд, содержащих эти металлы в виде окислов или сернистых соединений. Так, из FeO получают чугун (процесс, аналогичный доменному), из MnO- марганец, из SiO_2- кремний, из MoO_3- молибден, из CaO (извести) — карбид кальция CaC_2 и т. д.

Во многих случаях получают не чистые металлы, а их сплавы с железом – ферросплавы (ферросилиций, ферромарганец, феррохром, силикомарганец и др.). Они имеют меньшую температуру плавления, их легче и дешевле получать. Такие сплавы широко применяются при производстве сталей, как легированных, так и обычных углеродистых.

Широко применяются также в промышленности получаемые в этих печах фосфор (удобрения), карбид кальция (производство ацетилена, некоторых сортов удобрений), никелевый штейн (получение металлического никеля). Более ограниченный характер носит производство в рудно-термических печах других материалов, таких, как малоуглеродистые ферросплавы и чистые кремний, марганец, хром (применяются для получения некоторых высоколегированных сталей), алунд и карборунд (абразивные материалы), электрографит (графиковые электроды для ДСП) и др.

Рудно-термические печи имеют следующие отличительные черты:

- 1. Удельное электрическое сопротивление шихты в нагретом состоянии сравнительно велико (холодная шихта, как правило, неэлектропроводна).
- 2. В отличие от ДСП, в которых по существу проводится лишь один процесс выплавка электростали (все варианты этого процесса могут быть осуществлены в одном типе печи), в рудно-термических печах проводится множество различных технологических процессов, оказывающих существенное влияние на электрические и геометрические параметры и конструктивные особенности печей.
- 3. Энергоемкость проводимых в рудно-термических печах процессов весьма велика и достигает 2000–10 000 кВтч/т продукта (против 600–1000 кВтч/т при выплавке стали).
- 4. Для многих рудно-термических процессов (получение массовых ферросплавов, чугуна, карбида кальция, фосфора, никелевого штейна) характерны крупные объемы производства, поэтому необходимы очень мощные печи (до 100 MB·A).
- 5. Печи работают непрерывно, капитальный ремонт возможен один раз в 1,5–2 года, поэтому требуется высокая надежность конструкций печи, а в местах, подвергающихся нагреву, усиленное водяное охлаждение.

6. Электрический режим печей (кроме рафинировочных печей с открытой дугой) сравнительно спокоен, так как последовательно или параллельно с дугой включено сопротивление шихты; кроме того, сама дуга горит устойчиво (большие токи, хорошая тепловая изоляция дуг и, следовательно, высокие температуры зон вокруг дуги), толчки тока невелики, эксплуатационные короткие замыкания отсутствуют. Из всего многообразия процессов можно выделить следующие пять основных групп процессов:

Бесшлаковые и малошлаковые процессы — получение ферросилиция, ферромарганца, углеродистого феррохрома, карбида кальция. Печи для этих процессов (рис.5.5) трехфазные, непрерывного действия, неподвижные: загрузка осуществляется сверху, порциями; выпуск металла производится периодически через летки 8, которые забиты пробками и пробиваются или прожигаются электрической дугой перед выпуском. Обычно печь в плане — круглая (меньшие тепловые потери; электроды расположены по треугольнику, следовательно, меньше перенос мощности), но применяются и прямоугольные печи с размещенными по длинной оси прямоугольника тремя или шестью электродами. В первом случае печь имеет две или три летки, во втором — всегда три летки (против каждого электрода) с выпуском металла поочередно из каждой летки. Электроды 1 погружены в шихту, они зажаты электрододержателями 2, висящими на цепях лебедок.

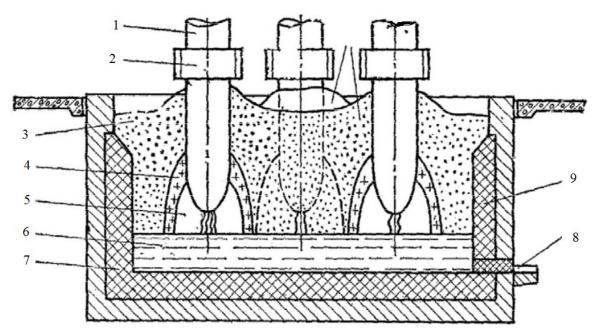


Рис. 5.5. Схема печи для бесшлакового процесса: 1 – электроды, 2 – электрододержатели, 3 – шихта, 4 – стенки тигля, 5 – газовый пузырь, 6 – жидкий металл (расплав), 7 – подина, 8 – летки, 9 – стенки шахты

Дуга горит в газовом пузыре 5 у нижних концов электродов 1 в шихте; пузыри возникают из-за давления выделяющихся газов и оформляются спекшейся шихтой, образующей стенки «тигля» 4, опирающиеся на жидкий металл (расплав) 6, на котором и горит дуга; на внутренней поверхности «тигля» температура равна температуре плавления металла. Именно в стенках «тигля» протекают реакции восстановления;

восстановленный металл расплавляется на внутренней поверхности «тигля» и каплями стекает вниз. Ток проходит не только по дуге, но и от электрода к расплаву через стенки «тигля» (спекшаяся шихта является хорошим проводником), шунтируя ток дуги. Последовательно с другой включен расплав; в нем также выделяется джоулева теплота, но она невелика, так как электрическое сопротивление металлического расплава мало. Кроме того, ток проходит по «треугольнику» непосредственно от электрода к электроду через шихту 3, однако ввиду высокого сопротивления холодной шихты этот ток невелик.

По мере расплавления шихты в «тигле» ее место занимает опускающаяся вниз вокруг электродов шихта. Остальные участки шихты (у стен шахты печи, между электродами) остаются неподвижными и не участвуют в реакциях, образуя гарнисаж, защищающий футеровку от перегрева. Загрузку шихты поэтому следует проводить вокруг электродов, а не по всей площади колошника, образуя вокруг них конусы 10. Благодаря этим конусам газы (СО) отклоняются от электродов и выходят на колошнике на некотором расстоянии от электрододержателей 2. В противном случае последние, несмотря на водяное охлаждение, быстро вышли бы из строя в результате воздействия горящих струй окиси углерода.

Так как восстановителем является углерод (кокс), стенки шахты печи 9 и ее подина 7 могут быть изготовлены из угольных блоков, выдерживающих большую по сравнению с керамическими материалами температуру.

Условия работы у открытого колошника и у леток тяжелые (жара, пыль, необходимость вручную регулировать состав шихты). Отсюда вытекает настоятельная необходимость закрытия колошника печи, ее герметизации и механизации загрузки печи и выпуска металла.

2. *Многошлаковые процессы* – получение никелевого штейна из сернистых руд (рис. 5.6), фосфора и др.

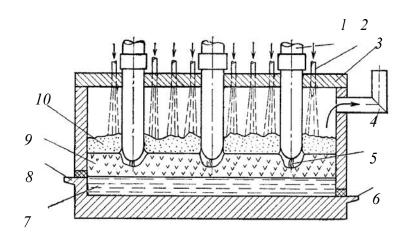


Рис. 5.6. Схема печи для многошлакового процесса:

1 – электроды; 2 –устройства для загрузки шихты; 3 – свод; 4 – вытяжка газов; 5 - электрическая дуга; 6 – металл; 7 – расплав; 8 – шлак; 9 – расплавленный шлак; 10 - шихта.

Печи для многошлаковых процессов также непрерывного действия, прямоугольные (для никелевого штейна — с тремя или шестью электродами I) или круглые (для фосфора), неподвижные, с выпуском через летки отдельно металла 6 и отдельно шлака 8, летки для металла и шлака находятся на разных уровнях. На поверхности расплава 7 плавает толстый слой расплавленного шлака 9, ток проходит через дугу 5и шлак на расплав. Загрузка шихты через устройства 2 осуществляется на поверхность шлака, шихта 10 плавает на нем и растворяется в шлаке, восстановленный металл стекает в расплав. Благодаря этому не требуется ухода за колошником, что облегчает закрытие и герметизацию печи. Такие печи перекрыты сводом 3 и герметизированы, имеют вытяжку газов 4, так как либо их газы ядовиты, либо нужный продукт получается в виде пара (фосфор), который надо сконденсировать и собрать.

- 3. *Рафинировочные процессы* получение безуглеродистых или малоуглеродистых ферромарганца и феррохрома, металлического кремния и никеля.
 - 4. Блок-процессы получение электрокорунда, ферровольфрама, карбида бора.

Конструкция и электрооборудование рудно-термических печей

Печи для бесшлаковых и многошлаковых процессов состоят из следующих основных элементов.

Ванна печи. Ванна состоит из прочного цилиндрического или прямоугольного кожуха, усиленного горизонтальными и вертикальными поясами жесткости, футерованного изнутри магнезитовой или угольной футеровкой и установленного на бетонном фундаменте. Кожух у печей для бесшлаковых процессов открыт сверху или перекрыт металлическим охлаждаемым водой сводом; у печей для многошлаковых процессов он перекрыт арочным керамическим сводом. Подина ванны очень толстая и обладает большой тепловой инерцией. Ванна печи снабжена несколькими летками для выпуска сплава и шлака. Закрытые печи снабжаются газоотводом и системой газоочистки.

Электроды. Обычно печь имеет три электрода, расположенных по треугольнику (круглые печи) или вытянутых в линию (прямоугольные печи); в последнем случае на крупных печах применяют шесть электродов. Электроды — самоспекающиеся, они состоят из стального кожуха, сваренного из листа, и заполняющей его массы (кокс в смеси с каменноугольной смолой и пеком). Внизу, в ванне печи, электроды расходуются, причем кожух расплавляется. По мере обгорания и распыления концов электродов они опускаются, наполняющая их масса попадает во все более горячую зону и спекается, превращаясь в твердый угольный электрод. По мере укорочения электрода к его верхней части приваривают новую секцию кожуха, заполняемую новой порцией массы. Такие самоспекающиеся электроды достигают 2000 мм в диаметре и образуют столб длиной 10–15 м и массой до 5 т.

Конструкция рафинировочных печей аналогична конструкции ДСП. Разница заключается в том, что обычно рафинировочные печи имеют неподвижную шахту, стоящую рядом с печью на фундаменте, в которой передвигаются стойки с электрододержателями. Этот вариант конструкции возможен, так как эти печи обычно не имеют свода и работают с открытым колошником.

Токоподводы. Так как токи фаз составляют несколько десятков тысяч ампер и доходят до 100 000 А и даже больше, токоподводы выполняются для уменьшения индуктивности из перешихтованных шин (чередование прямых и обратных шин или чередование фазных шин) или охлаждаемых водой медных труб. Они состоят из трех частей — перешихтованного участка от выводов печного трансформатора до неподвижных литых медных башмаков, в которых закреплена гибкая часть токоподвода — пакеты гибких кабелей или лент, обеспечивающих свободное перемещение электрододержателей относительно неподвижного токоподвода. Другой конец гибкой петли токоподвода зажат в подвижных башмаках, жестко связанных медными водоохлаждаемыми трубами со щетками электрододержателей.

Электрическое оборудование, обслуживающее крупные рудно-термические печи, отличается от оборудования ДСП тем, что отсутствует реактор, так как режим относительно спокоен, дуги более устойчивы и хорошо теплоизолированы. Трансформаторы, как правило, выполняются с переключением ступеней напряжения под нагрузкой, регулирование режима осуществляется как перемещением электродов, так и переключением ступеней трансформатора. Ввиду перешихтовки токоподводов трансформаторы тока со стороны низкого напряжения установить нельзя. Несмотря на перешихтовку, индуктивность токоподводов весьма велика и коэффициент мощности установки низок (0,7–0,8); кроме того, велика неравномерность нагрузки по фазам, особенно в прямоугольных печах (перенос мощности).

Для улучшения коэффициента мощности и доведения его до приемлемого значения (0,9–0,95) применяются те или иные схемы компенсации мощности с помощью конденсаторов.

При поперечно-емкостной компенсации (рис. 5.7) конденсаторы C включаются между фазами со стороны высшего напряжения, при этом реактивная энергия не поступает в сеть, а циркулирует в трансформаторе T и короткой сети, вызывая дополнительные потери. При продольно-емкостной компенсации (рис. 5.8) конденсаторы C включаются в разрез токоподвода последовательно с дугами. Так как напряжение на стороне низшего напряжения мало и потребовалась бы очень большая емкость конденсаторов для компенсации, причем они были бы в значительной степени недоиспользованы, их включаемые осуществляется в специальные повышающие трансформаторы T1-T3, включаемые в токоподвод последовательно.

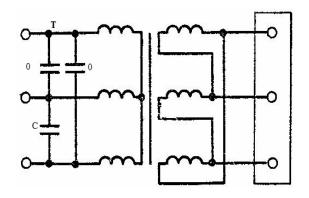


Рис. 5.7. Схема поперечно-емкостной компенсации

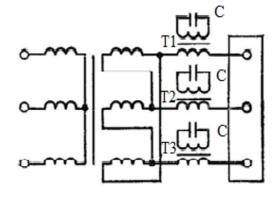


Рис. 5.8. Схема продольно-емкостной компенсации

При продольно-емкостной компенсации мощность электропечного трансформатора можно уменьшить, так как она покрывает лишь активную составляющую, однако при этом появляются еще три однофазных повышающих трансформатора.

5.3. Вакуумные дуговые печи. Области применения и устройство

Для повышения качества металла, полученного в других установках (например, в ДСП), его переплавляют при низком давлении в вакуумных дуговых печах (ВДП), в результате чего в металле уменьшается содержание вредных примесей и растворенных газов. ВДП применяют в основном для выплавки слитков высокореакционных металлов (титана, ниобия, вольфрама, циркония, тантала, молибдена), а также для переплава специальных высококачественных сталей, в результате чего они не только очищаются, но и приобретают более плотную структуру. Рабочее давление в камере печи может составлять 1,0–0,001 Па в зависимости от требований к получаемому металлу. С помощью современных ВДП получают слитки массой от нескольких сотен килограммов до 50–60 т.

В качестве материалов электродов в ВДП используются различные продукты металлургического передела. Так, при плавке титана круглые электроды изготовляют прессованием титановой губки. При переплавке вольфрама, молибдена и ниобия электроды изготовляют из штабиков путем стыковой сварки и сборки электродовпакетов. При переплавке сталей в качестве электродов применяют прокат или специальные штанги, полученные методом непрерывной разливки или ковки. В некоторых установках применяют нерасходуемые электроды, а переплавляемый металл кусками подается в кристаллизатор. Каждый из этих способов, в свою очередь, может быть осуществлен по двум схемам: плавка в глухой кристаллизатор (рис. 5.9, a) и плавка с вытягиванием слитка (рис. 5.9, δ).

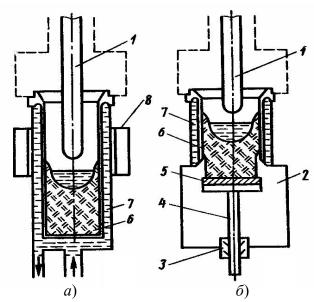


Рис. 5.9. а – схема ВДП с глухим кристаллизатором; б – схема ВДП с вытягиванием слитка:

1 – электрод; 2 – холодильник; 3 – вакуумное уплотнение штока; 4 – тянущий шток; 5 – поддон; 6 – слиток; 7 – кристаллизатор; 8 – соленоид

Основной частью печи является рабочая камера, к которой присоединена вакуумная система. Электрод I подвешен к подвижному штоку. Шток проходит через вакуумное уплотнение, расположенное в верхней части камеры. К нижней части рабочей камеры присоединяется водоохлаждаемый кристаллизатор I с рубашкой водяного охлаждения. К электроду подается отрицательный, а к кристаллизатору положительный полюс источника питания. В печи, работающей по схеме с вытягиваемым слитком (рис. I 5.9, I 6), имеется проходящий через вакуумное уплотнение I шток I 7 и по мере роста слитка I 6 опускается вниз. Процесс вакуумной плавки начинается с создания вакуума в рабочей камере печи и опускания электрода до крайнего нижнего положения. После короткого замыкания или пробоя межэлектродного промежутка возникает дуга. Под действием выделяющейся теплоты электрод расплавляется, и металл небольшими каплями перетекает на слиток.

Объем кристаллизатора и размеры электрода, как правило, согласованы. В конце плавки весь электрод переходит в расплав, а испаряющиеся примеси и газы откачиваются вакуумной системой. Такая печь называется печью с расходуемым электродом.

В практике широко применяются ВДП с расходуемыми электродами, поскольку при работе с нерасходуемыми электродами есть опасность загрязнения переплавляемого металла материалом электрода.

Основные элементы печи

К основным элементам печи относятся: рабочая камера, шток-электрододержатель, расходуемые электроды, кристаллизатор, поддон, соленоид.

Рабочая камера представляет собой водоохлаждаемую сварную конструкцию цилиндрической формы. В верхней части рабочей камеры установлены подсветы и

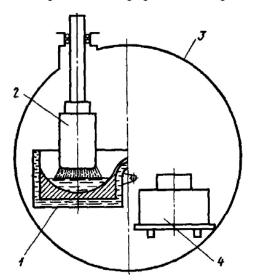


Рис. 5.10. Схема вакуумной дуговой печи для фасонного литья: 1 - тигель, 2 - электрод, 3 - камера, 4 - форма.

смотровые окна, позволяющие наблюдать за горением дуги и наплавлением слитка. Для дистанционного наблюдения за ходом процесса к гляделкам пристраиваются специальные перископы, проектирующие изображение рабочей зоны на экран. К нижнему фланцу камеры прикреплен кристаллизатор.

Шток — электрододержатель служит для закрепления и перемещения расходуемого электрода и подвода к нему тока. Он состоит из нескольких коаксиально расположенных труб, причем медная наружная труба является токоведущей. Внутренние стальные трубы обеспечивают механическую прочность конструкции штока. Между трубами имеются полости для прохода охлаждающей воды.

Расходуемые электроды могут быть прикреплены к штоку различными способами.

Они могут быть приварены к огарку, который крепят к хвостовику штока с помощью резьбы, могут удерживаться с помощью специального клиновидного или цангового зажима. Перемещение штока и расходуемого электрода обеспечивается электрическим или гидравлическим приводом.

Кристаллизатор состоит из внутренней гильзы и наружного стального немагнитного кожуха. Между ними имеется полость для охлаждающей воды. Гильзу изготовляют из материала с хорошей теплопроводностью, не смачивающегося жидким металлом.

Поддон закрывает низ кристаллизатора, входит внутрь или примыкает к торцу его гильзы. Основа поддона — массивный медный диск, снабженный стальной рубашкой водяного охлаждения. Для предотвращения возможного прожога медного диска электрической дугой в начале плавки на него укладывают темплет из переплавляемого металла толщиной 50–100 мм.

Соленоид устанавливают на боковой поверхности кристаллизатора. Он создает аксиальное с ним магнитное поле. Взаимодействие поля соленоида с током дуги и током, растекающимся в ванне расплавленного металла, приводит к повышению напряжения на дуге (для стали с 19–20,5 до 24–25 В), предотвращает переброски дуги на стенку кристаллизатора, стабилизирует дугу. При этом возникает вращение жидкого металла в ванне, что улучшает структуру переплавляемого металла. Питание соленоида производится от полупроводниковых выпрямителей, позволяющих при необходимости производить резкое увеличение и реверсирование тока намагничивания.

Для литья в вакууме существуют специальные вакуумные дуговые печи, которые подразделяют на две группы: печи с разливкой при горящей дуге и печи с разливкой после отключения дуги.

Такая печь (рис. 5.10) состоит из камеры 3, в которой размещены собственно плавильный агрегат, включающий тигель 1, и электрод 2. Расплавленный металл сливается в форму 4.

Электрооборудование вакуумных дуговых печей

Силовая цепь ВДП включает в себя: источник питания, токопровод от источника питания до печи, токоведущие участки конструкции, токоведущий шток, электрододержатель, расходуемый электрод, слиток, кристаллизатор, вакуумную камеру. Конструкция токоподвода обеспечивает равномерный контакт по периметру поддона, кристаллизатора и вакуумной камеры, что снижает уровень

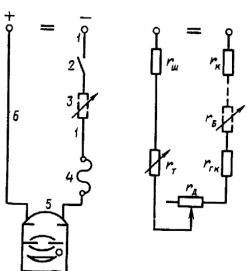


Рис. 5.11 Электрическая схема и схема замещения ВДП: 1 - шинный токопровод гш, 2 - выключатель, 3 - баллстное сопротивление гб, 4 - гибкий кабель ггк, 5 - ВДП гд, 6 - шинный токопровод к кристаллизатору гт.

магнитных полей и способствует стабилизации дугового разряда. Принципиальная

электрическая схема ВДП и эквивалентная схема замещения ее силовой цепи показаны на рис.5.11.

Суммарное сопротивление силовой цепи

$$r = r_{\text{III}} + r_{\text{FK}} + r_{\text{K}} + r_{\text{T}}.$$

В ходе плавки за счет оплавления расходуемого электрода значение $r_{\scriptscriptstyle \rm T}$ уменьшается, однако для приближенных расчетов $r_{\scriptscriptstyle \rm T}$ можно принять постоянным.

Источники питания ВДП имеют следующие основные характеристики:

- 1. Низкое сопротивление дуги, обусловливающее применение больших (десятки килоампер) токов для поддержания необходимой тепловой мощности, при этом вольт-амперная характеристика (ВАХ) дуги, слабопадающая, горизонтальная или слабовозрастающая, определяет необходимость крутопадающей или вертикальной характеристики источника питания.
 - 2. Широкий (1–8) диапазон регулирования мощности.
- 3. Высокую стабильность поддержания мощности на заданном уровне (отклонения не более 2 %).
- 4. Особо высокую надежность, так как непредвиденное отключение печи ведет к потере выплавленного металла.

Все новые установки имеют агрегаты одного из трех типов: выпрямительный на неуправляемых вентилях, выпрямительный на тиристорах, параметрический источник тока.

Выпрямительный агрегат на неуправляемых вентилях серии ВАКП основан на принципе стабилизации и регулирования тока с помощью дросселей, включенных последовательно с вентилями (рис.5.12).

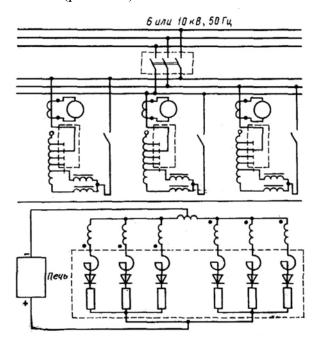


Рис.5.12. Схема выпрямительного агрегата серии ВАКП с неуправляемыми вентилями на ток до 12,5 кА

Крутизна падающего участка внешней характеристики определяется наклоном ненасыщенной части кривой намагничивания железа. Для ограничения тока короткого замыкания (КЗ) до двукратного значения $I_{\rm H}$ предусмотрено повышенное реактивное сопротивление, для чего к трансформатору присоединен реактор. Агрегаты, выполненные по этой схеме, работают при токах до 12,5; 25,0 и 37,5 кА и состоят из отдельных блоков: трансформатор, дроссели насыщения, выпрямительный шкаф, устройство для измерения, шкаф и пульт управления, системы водоснабжения.

Силовой трансформатор со ступенями регулирования напряжения состоит из магнитопровода с концентрически расположенными обмотками высокого (ВН) и низкого (НН) напряжения. В схеме переключающего устройства предусмотрен трехфазный токоограничивающий реактор, состоящий из магнитопровода и двойных дисковых катушек. Дроссель насыщения состоит из однофазных дросселей, каждый из которых собирается из элементов, представляющих собой кольцевой магнитопровод с обмотками управления и смещения. Изменение сопротивления дросселя осуществляется регулированием тока в обмотке управления. Если возможностей регулирования дросселя оказывается недостаточно для поддержания требуемого тока, ступени трансформатора автоматически переключаются в нужную сторону.

Выпрямительный агрегат имеет параллельные звезды, лучи которых состоят из параллельно соединенных вентилей, установленных на шинах, охлаждаемых водой. Равномерная загрузка вентилей обеспечивается индуктивными делителями тока. Цепь каждого вентиля защищена плавким предохранителем. Выпрямительный агрегат имеет защиту от перегрузки по току. При КЗ на стороне постоянного тока длительностью более двух секунд масляный выключатель отключает агрегат. При КЗ на стороне переменного тока агрегат отключается максимально-токовой защитой мгновенного действия.

Агрегаты серии АВП дают более высокую точность поддержания тока и имеют токоограничивающие дроссели только на стороне низкого напряжения (рис. 5.13). Автоматическая стабилизация тока в процессе плавки обеспечивается системой управления дросселями насыщения, состоящей из измерительных трансформаторов постоянного тока (ТПТ) и тиристоров, регулирующих ток в управляющей обмотке дросселей, включенных последовательно в цепь каждой ветви вторичной обмотки трансформатора. Силовые трансформаторы с первичным напряжением 10 кВ (звезда) и 6 кВ (треугольник) имеют 17 ступеней напряжения, переключаемых под нагрузкой. Вторичные обмотки выполнены по схеме «две обратные звезды» с уравнительным реактором. Плавное регулирование напряжения с дросселями насыщения производится внутри ступени напряжения трансформатора. Выпрямительный шкаф рассчитан на ток 12,5 кА и содержит шесть групп вентилей, каждая из которых через дроссель насыщения соединена с соответствующей обмоткой трансформатора.

Агрегаты на токи 25 и 37,5 кА имеют соответственно два и три шкафа. Номинальное выпрямленное напряжение -75 В, напряжение на дуге -25–35 В, мощность агрегата -940–2800 кВт. Выпрямительный агрегат имеет необходимые виды защит и блокировок. Для повышения коэффициента мощности на стороне высокого напряжения установлена автоматически управляемая батарея конденсаторов.

Выпрямительные агрегаты на тиристорах, построенные на основе принципиальной схемы рис.5.14, входят в состав всех новых ВДП. Агрегаты на тиристорах на-

ряду с высокой точностью стабилизации тока имеют высокий КПД, минимальные, габаритные размеры и массу.

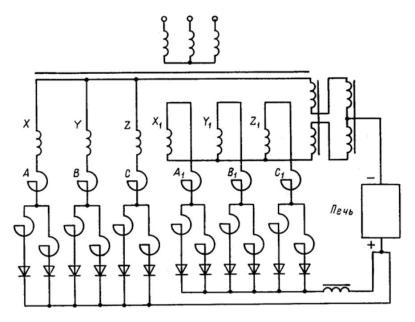


Рис.5.13. Схема выпрямительного агрегата серии АВП (на ток до 12,5 А)

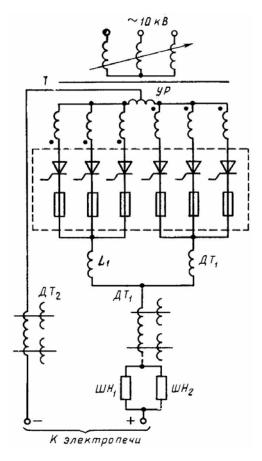


Рис. 5.14. Схема главных цепей тиристорного преобразовательного агрегата ТВ

Питание агрегатов марок TB9-12500/75T, TB9-2500/75T, TB9-37500/75T, TB9-50000/75T, TB9-50000/75T, TB9-50000/15T, TB9-50000/115T осуществляется на напряжении 6 или 10 кВ, первичная обмотка трансформатора имеет устройство РПН. Вторичная обмотка состоит из групп двух обратных звезд с уравнительными реакторами. Каждая группа рассчитана на ток 12,5 кА (ТВ9-12500/75T). Сглаживающие реакторы L_1 и L_2 предохраняют источник от резких бросков тока, возникающих при капельных коротких замыканиях. Номинальный ток (12,5–50 кА) и вторичное напряжение (75 или 115 В) указаны в марке агрегата источника.

Шунты ШН $_1$, ШН $_2$ и датчики тока ДТ $_1$ и ДТ $_2$ (трансформаторы постоянного тока), а также измерители, основанные на эффекте Холла (для токов 37,5 и 50 кА), служат для измерения тока. В агрегатах применена система импульсов по принципу вертикального управления тиристорами. Идея этого способа управления заключается в формировании линейного или косинусного опорного напряжения с последующим формированием прямоугольного импульса. Импульс увеличивается усилителем мощности и после выпрямления подается на управляющий электрод тиристора. Синхронизация импульсов осуществляется фазовым синхронизатором. Регулирование и стабилизация тока при изменении напряжения питающей сети или сопротивления нагрузки производятся по принципу сравнения фактического и заданного значений токов с помощью усилителей. Коэффициент мощности агрегата зависит от глубины регулирования и может снижаться до 0,6.

Параметрические источники тока (ПИТ). Для получения крутопадающих или вертикальных ВАХ источников питания ВДП используются резонансные схемы, главным признаком которых является постоянство тока нагрузки при изменяющемся ее сопротивлении.

Система автоматического управления (САУ). ВДП должна так регулировать мощность, чтобы требуемая скорость наплавления металла равнялась скорости кристаллизации слитка. Кроме того, САУ должна обеспечивать устойчивое горение дуги, поддерживать в заданных пределах непрерывно изменяющуюся длину дуги, режим ее горения. Поэтому в состав САУ входят следующие компоненты: управляемый источник тока, регулятор длины дугового промежутка (скорость перемещения электрода), регулятор тока соленоида. ВДП как объект управления представляется в виде системы, состоящей из четырех динамических звеньев с внутренней обратной связью: электрическая дуга, межэлектродный промежуток, электрод, ванна жидкого металла – слиток. Входными величинами звена «электрическая дуга» являются напряжение источника питания $U_{\rm u}$ и межэлектродный промежуток $l_{\rm cr}$ (τ), которые определяют выходные параметры дуги: ток $I_{\Pi}(\tau)$, напряжение $U_{\Pi}(\tau)$, мощность $P_{\Im}(\tau)$, поступающую в ванну расплава. Возмущающими воздействиями являются случайные изменения условий существования дугового разряда. Входными величинами звена «межэлектродный промежуток» являются скорость подачи электрода $v_{\text{пол}}(\tau)$ и скорость его плавления $v_{\pi\pi}$ (τ), приведенная к линейной скорости увеличения промежутка. Выходной регулируемой величиной является длина промежутка $l(\tau)$, определяемая как интеграл разности указанных величин. Возмущающими воздействиями являются колебания поверхности ванны металла и изменение формы торца электрода. Входной величиной звена «электрод» является мощность P_3 (τ), поступающая с выхода звена «электрическая дуга», возмущающими воздействиями являются изменения положения и типы дугового разряда. В звене «ванна жидкого металла—слиток» входными величинами являются скорость расплавления $v_{\text{пл}}\left(\tau\right)$ и мощность $P_{\text{в}}\left(\tau\right)$, определяющие режим кристаллизации слитка.

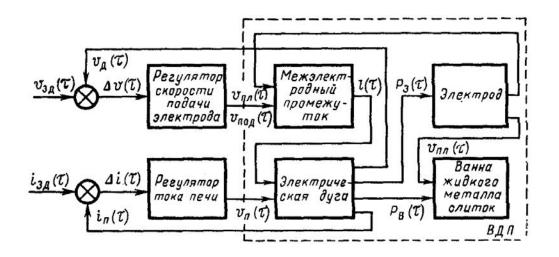


Рис. 5.15. Структурная схема САУ ВДП

В системах управления ВДП используются регуляторы типов АРД ВП-3, АРДВ-Р2, АРДВ-Р2М и БУДП-10-1, применяемые с электромашинными, параметрическими и тиристорными источниками питания.

В настоящее время разработан универсальный регулятор ШЦД 970X на базе управляющего микропроцессора. В состав регулятора дополнительно входят устройство визуального отображения информации, ручного ввода-вывода информации, тиристорные преобразователи для питания соленоида и электродвигателей перемещения электрода. В программируемом постоянном запоминающем устройстве микропроцессора хранится программа, реализующая алгоритм управления переплавом.

5.4. Печи электрошлакового переплава

Технологический процесс переплава. Развитие за последние25–30 лет авиации, ракетной, космической и других областей техники потребовало новых, более прочных материалов, дающих возможность создания легких и долговечных конструкций. Основными материалами остались стали, но качество их существенно повысилось. Оказалось, что можно значительно улучшить прочностные свойства сталей, их вязкость, пластичность, сопротивляемость переменным нагрузкам и истиранию, если очистить их от мелких загрязнений, примесей, неметаллических включений и растворенных в них газов (азота, водорода, кислорода). При этом оказалось возможным существенно улучшить такие сорта стали, как шарикоподшипниковые, пружинные, жароупорные (лопатки турбин реактивных двигателей). Например, в результате очистки от примесей и растворенных газов шарикоподшипниковой стали удалось увеличить ресурс (срок службы) шарикоподшипников в полтора-два раза.

Лучшие сорта стали получают в ДСП, в которых путем специального рафинирования удается удалить из металла в шлак вредные растворенные в металлической ванне примеси, такие, как сера, фосфор, окислы железа, углерод. Однако ряд неметаллических примесей и растворенных в металле газов удалить полностью в процессе рафинирования стали в ДСП не удается. Для того чтобы добиться особой чистоты стали, нужно еще раз (а иногда и два раза) ее переплавить и провести рафинирование в новых условиях, в корне отличных от условий, в которых проводится рафинирование стали в ДСП. Несмотря на то что это дорого, такой процесс вторичного переплава стали себя оправдывает.

Чтобы таким образом очистить сталь, нужно, во-первых, найти такой шлакообразующий материал, который интенсивно отбирал бы из металла как неметаллические включения, так и газы; во-вторых, обеспечить более интенсивное и более тесное взаимодействие между жидкой сталью и шлаком; в-третьих, защищать расплавленный металл от соприкосновения с воздухом и футеровкой печи – источниками насыщения металла газами и неметаллическими включениями.

Процесс, который позволил осуществить все указанные требования, назван электрошлаковым переплавом (ЭШП).

Осуществляется он следующим образом (рис. 5.16). Из полученной в ДСП стали отливают, прокатывают или проковывают круглые расходуемые электроды примерно половинного сечения по сравнению с желаемыми размерами слитка и длиной 6-8 м. Конец такого электрода 1 опускают в металлическую (обычно медную) охлаждаемую водой трубу – кристаллизатор 2. Последний нижним концом устанавливают на поддон 7, также медный и водоохлаждаемый. На поддон, находящийся на тележке, предварительно укладывают затравку (темплет) 6, выполненную из той же стали, которую хотят получить. Конец электрода устанавливают на затравку, а пространство между ним и стенкой кристаллизатора заливают жидким (расплавленным) фтористым шлаком 3 марок АН-6 или АН-7, состоящим из 65-80 % фтористого кальция и 35-20% глинозема Al_2O_3 . Затем слегка приподнимают электрод, к нему и поддону прикладывают напряжение 45-60 В промышленной частоты. Ток растекается от конца электрода по шлаку (жидкий шлак электропроводен) к стенкам кристаллизатора и к поддону. Шлак разогревается до 1700 °C под действием протекающего через него тока; конец электрода разогревается от шлака и начинает расплавляться, каплями через шлак стекая на поддон. В результате конец электрода принимает форму конуса, а на дне кристаллизатора образуется жидкометаллическая ванна. Но так как поддон и кристаллизатор медные и охлаждаются водой, то, соприкасаясь с ними, жидкая сталь сразу же застывает, образуя слиток 5, на верхней части которого за счет постоянно притекающего сверху от электрода перегретого металла и образуется жидкометаллическая ванна 4, имеющая сфероконичесную форму. Постепенно расходуемый электрод плавится все больше, а слиток растет в кристаллизаторе, и верхняя поверхность его поднимается вместе с жидкометаллической ванной. В конце плавки, когда расходуемый электрод расплавится (кроме огарка, зажатого в электрододержателе), слиток заполняет кристаллизатор. Печь отключают, кристаллизатор откатывают на тележке в сторону и разгружают: кристаллизатор снимают со слитка вверх (для облегчения съема он выполняется слегка конусным). Из электрододержателя извлекают огарок и вставляют новый расходуемый электрод. Затем под электрод подкатывают второй кристаллизатор, и начинается новая плавка. Таким образом, процесс ЭШП является периодическим, а установка ЭШП – печью периодического действия.

Падающий с конца электрода каплями перегретый металл проходит до попадания в ванну через слой шлака. Поверхность капель намного больше поверхности ванны, поэтому рафинирующее действие шлака более интенсивно, чем в ДСП. Шлак защищает жидкий металл от соприкосновения с воздухом, а соприкосновение его с холодными стенками кристаллизатора также не способствует его загрязнению. Поэтому металл, полученный ЭШП, намного чище по сравнению с металлом, полученным в ДСП.

Установка Установок ЭШП (рис. 5.17). Установка ЭШП состоит из неподвижной стойки 5, по которой вверх и вниз может перемещаться на роликах каретка 4, несущая электрододержатель с зажатым в нем электродом 3. Кристаллизатор 2 с поддоном 1 установлен на тележке на рельсах и может выкатываться из-под электрода.

Питание установки осуществляется от понижающего трансформатора 7 с большим числом мелких ступеней напряжения для регулирования скорости расплавления и компенсации изменения сопротивления контура, вызванного изменением длины, а следовательно, и сопротивления электрода по мере его расплавления. Токоподвод 6 от трансформатора к электроду имеет гибкую часть; его обратный провод имеет ножевой контакт 8 у поддона. Как видно, прямой и обратный провода образуют большую петлю, поэтому индуктивность токоподвода велика.

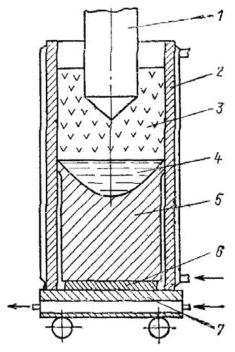


Рис. 5.16. Принцип действия установки электрошлакового переплава: 1— электрод, 2— кристаллизатор, 3— фтористый шлак, 4— жидкометаллическая ванна, 5— слиток, 6— темплет, 7— поддон

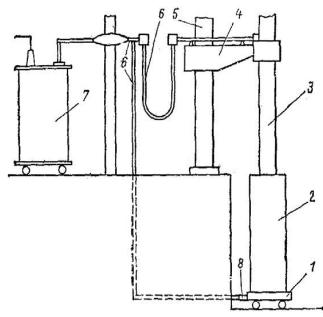


Рис. 5.17. Схема установки ЭШП: 1— поддон, 2 — кристаллизатор, 3 — электрод, 4 — каретка, 5 — стойка, 6 — токопровод, 7 — трансформатор, 8 —ножевой контакт

Печи ЭШП выполняются на слитки в 1–5 т и более (до 100 т; проектируются печи на слиток на 150 и до 250 т). Мощность печей достигает (для слитка массой 40 т) 3000 кВ·А , а так как напряжение невелико и печь однофазная, токи достигают 75~000 А и более. Поэтому из-за большой индуктивности токоподвода коэффициент мощности установки составляет всего 0.8–0.7, снижаясь до 0.6 у печи на слиток 40 т.

Так как тепловые потери в кристаллизаторе велики, КПД установок низок, а удельный расход энергии достигает $1000-1200 \text{ кBt} \cdot \text{ч/т}$.

Для улучшения параметров и эксплуатационных характеристик печей ЭПШ делались попытки их перевода на питание постоянным током, однако они не дали положительных результатов, так как качество слитков при этом снизилось.

Попытки разработки трехфазной печи с тремя расположенными в линию кристаллизаторами также не имели успеха из-за большого переноса мощности и очень значительного расхождения в скорости плавления в «мертвой» и «дикой» фазах. Лучше работает трехфазная печь с одним кристаллизатором и тремя расположенными по треугольнику электродами.

В настоящее время используют два метода снижения индуктивности контура печи. Первый состоит в применении бифилярного токоподвода у печей с двумя электродами и прямоугольным кристаллизатором для выплавки плоских слитков; в этом случае прямой и обратный провода могут располагаться рядом, и индуктивность токоподвода резко уменьшается; коэффициент мощности растет до 0,9–0,95. Второй способ – питание печей ЭШП током низкой частоты (2–10 Гц) от преобразователя частоты.

Электрический режим печей ЭШП сравнительно спокойный: дуга отсутствует, колебания тока невелики. Качество слитка получается хорошим, если скорость плавления постоянна. Для этой цели на печах устанавливается система автоматического регулирования, стабилизирующая ток ванны, в то время как напряжение на ней меняется по программе за счет переключения ступеней напряжения питающего трансформатора. Благодаря этому в начале плавки мощность печи поднимается постепенно (прогрев электрода), а в конце плавки также постепенно снижается. Последнее необходимо для вывода лунки и уменьшения усадочной раковины в верхней части слитка. Во время плавки перемещение электродов происходит с постоянной скоростью для обеспечения постоянства скорости наплавления слитка. Несмотря на дороговизну (низкий КПД, высокий удельный расход энергии), ЭШП себя оправдывает в ряде случаев из-за высокого качества металла и возможности получения очень плотных крупных слитков.

5.5. Плазменные дуговые установки

Дуга, свободно горящая в воздухе, имеет температуру столба 6000–8000 К. Если увеличить внешнее охлаждение дуги, сжав ее потоком газа, то температура ее столба возрастет. Этого можно достигнуть, направляя поток газа параллельно дуге (рис. 5.18, a) или по касательной к ней (рис. 5.18, δ); в последнем случае формируется закрученный вокруг дуги газовый поток. Таким путем можно добиться повышения температуры столба дуги до (10-20) 10^3 К и более. Такого рода дуга горит более устойчиво, чем открытая, и может достигать значительной длины; она характеризуется

большей плотностью тока, повышенным градиентом потенциала в столбе дуги, большей концентрацией мощности. Ее называют *стабилизированной дугой*.

С увеличением температуры увеличивается степень ионизации газа. Так, при температуре около 10 000 К степень ионизации паров ряда металлов достигает 0,5. Такое высокоионизированное состояние вещества называют *низкотемпературной плазмой*. При этом подразумевается, что в такой плазме числа положительно и отрицательно заряженных частиц в единице объема одинаковы (квазинейтральная плазма) и что вещество находится в состоянии термодинамического равновесия.

Стабилизация дуги может быть достигнута и обжатием ее магнитным полем (рис.5.18, в).

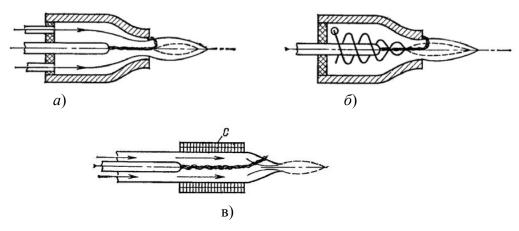


Рис.5.18. Схемы плазмотронов:

a-c параллельным током газа; $\delta-c$ закрученным током газа; b-c обжатием дуги магнитным полем соленоида C

Для того чтобы газ оказывал на дугу стабилизирующее действие, его скорость должна быть весьма большой — она может превышать скорость звука.

Устройства, в которых электрическая энергия превращается в тепловую энергию потока низкотемпературной плазмы, носят название *плазмотронов*.

Дуговые плазмотроны можно подразделить на высоковольтные (2000–6000 В, 50–500 А) и низковольтные (100–800 В, 2000–10 000 А). У первых дуга более длинная, с развитой поверхностью, приспособленной для нагрева газов, у вторых более концентрировано выделение энергии.

В настоящее время подавляющее количество плазмотронов работает на постоянном токе, так как сильное охлаждение дуги переменного тока газом приводит к ее неустойчивости: дуга обрывается при переходе тока через нуль.

Различают плазмотроны прямого действия, когда анодом является обрабатываемый материал (сталь в сталеплавильной плазменной печи; свариваемый или подвергаемый резке материал в плазменных сварочных установках), и косвенного действия, когда анодом является корпус плазмотронов (рис. 5.19), а нагрев осуществляется выходящим из сопла плазменным факелом.

Ток и мощность плазмотрона ограничены в основном эрозией электродов, что обусловливает малый срок их службы. В качестве материалов для катода применяют графит и торированный вольфрам, для анода — охлаждаемую водой медь или обрабатываемый материал (плазмотроны прямого действия).

Область применения плазмотронов весьма широка. Это – химическая промышленность, где высокая температура плазмы позволяет проводить реакции в газовой фазе с большой скоростью и полнотой; металлургия – плавление и переплав металлов, сварка и резка металлов, особенно цветных и тугоплавких; скоростное бурение горных пород; напыление – плазменное нанесение антикоррозионных, жаростойких и износостойких покрытий; стенды для испытаний материалов на ударные тепловые нагрузки; получение особо чистых порошков и выращивание монокристаллов.

В металлургии при плавке металлов, в частности стали, потоки плазмы можно применять как для переплава расходуемого электрода в кристаллизатор (рис.5.19), так и для плавки шихты в футерованной ванне. Печи должны быть герметизированы; в первом случае плавка проводится в вакууме, во втором - в атмосфере защитного газа, например, аргона. В результате может быть получен продукт плавки, приближающийся по качеству к металлу, получаемому в ВДП или вакуумных индукционных печах. Особенно интересна конструкция плазменной сталеплавильной печи (рис.5.19), напоминающей обычную ДСП, в которой три расположенные по треугольнику электрода заменены тремя плазмотронами прямого действия. Печь герметизирована, заполнена аргоном (газ подается через плазмотроны), имеет подовые электроды (аноды), расположенные подине.

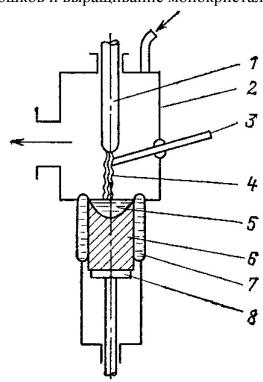


Рис. 5.19. Плазменная установка для переплава расходуемого электрода в кристаллизатор:

- 1 плазматрон, 2 камера, 3 расходуемая заготовка,
- 4 плазменная дуга, 5 ванна жидкого металла,
- 6 слиток, 7 гильза кристаллизатора, 8 подвижный поддон.

Для печи емкостью 10 т применены три плазмотрона мощностью по 1800 кВт каждый с параметрами: в начале плавки – 600 B, 3000 A; в конце – 300 B, 6000 A.

Преимуществом выплавки стали в плазменной печи по сравнению с ВДП является отсутствие вакуумной системы и дорогих расходуемых электродов (работа на шихте), а по сравнению с ДСП – высокое качество получаемого металла (плавка в аргоне). Недостатки плазменной печи – большая длина дуг (высокие тепловые потери, тяжелые условия работы свода и стен, сильные динамические взаимодействия дуг) и наличие подовых электродов (уменьшение надежности работы печи).

Плазменные сварка и резка металлов осуществляются с помощью плазмотронов постоянного тока прямого действия. Катодом является графитовый электрод, анодом – свариваемый (или разрезаемый) металл и добавочный электрод. В качестве

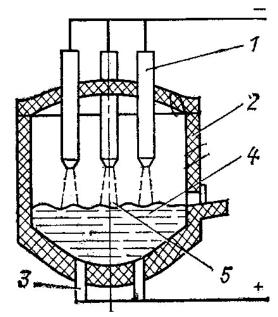


Рис. 5.20. Плазменная установка для переплава шихты в атмосфере защитного газа:

1 - плазмотроны, 2 - футеровка печи, 3 - подовые электроды, 4 - шихта, 5 - плазменные дуги.

плазмообразующего газа применяют воздух, нейтральные газы или водяной пар. В основном плазменная резка применяется для цветных и легких металлов и нержавеющей стали при больших толщинах металла.

Для напыления и нанесения покрытий применяют плазмотроны постоянного тока косвенного действия. Напыляемый материал вводится в состав катода и при плавлении последнего поступает в виде мелких капель в плазменный факел, обдувающий изделие, на которое нужно нанести покрытие. Если материал покрытия не электропроводен, он может быть введен в виде порошка в камеру плазмотрона. Благодаря большой скорости мель-

чайшие частицы внедряются в напыляемую поверхность, образуя на ней плотный слой покрытия.

Плазменное бурение горных пород осуществляется плазмотронами косвенного действия. Истекающий из такого плазмотрона факел плазмы вызывает резкий местный перегрев породы, которая растрескивается и распадается на куски.

5.6. Электронно-лучевые установки

Принции электронного нагрева. Если поместить два электрода в глубокий вакуум и нагреть катод до температуры более 2000 К, то он начнет эмитировать электроны, которые под действием электрического поля направятся к аноду. В вакууме при давлении $10^2 - 10^{-3}$ Па практически отсутствуют нейтральные частицы, положительно заряженные ионы не образуются, и ток можно считать чисто электронным.

Если ускоряющая электроны разность потенциалов достаточно велика, то при подходе к аноду электроны приобретают такую скорость, а следовательно, и кинетическую энергию, что оказываются способными разогревать анод своими ударами. При этом электрическая энергия превращается в тепловую в тонком поверхностном слое анода; дальнейшее распространение теплоты в последнем происходит теплопроводностью и конвекцией (если анод жидкий, например, жидкометаллическая ванна).

При еще больших скоростях электронов в результате бомбардировки анода электронным пучком возникает рентгеновское излучение аналогично тому, как это имеет место в рентгеновских трубках.

В электронном пучке электроны отталкиваются друг от друга, и пучок расширяется. Поэтому если необходимо получить острый, сконцентрированный пучок, то ускоряющее напряжение должно быть весьма высоким, а на пути пучка следует применять магнитную фокусировку, сжимая его магнитным полем. Практически при широком несфокусированном пучке (установки с кольцевым катодом и радиальными пушками) ускоряющие напряжения составляют 5–15 кВ, а при сфокусированном луче (установки с аксиальными пушками) – 30–40 кВ; при работе с остро сфокусированным лучом (сварочные установки) ускоряющие напряжения равны 70–100 кВ.

Если ускоряющее напряжение превосходит 20 кВ, то приходится принимать меры по защите персонала от рентгеновского излучения. При напряжениях до 40 кВ установки заключают в стальной кожух толщиной не менее 15 мм, в гляделках применяют свинцовое стекло толщиной 40 мм; при более высоком напряжении кожух обкладывают свинцовыми листами.

Электронно-лучевая установка (ЭЛУ) состоит из устройства для получения и формирования электронного пучка, рабочей камеры с расплавляемым электродом и кристаллизатором (плавильная печь) или с нагреваемым материалом (нагревательная печь) и откачной системы, поддерживающей в катодной области на пути пучка давление не более 10^{-2} Па.

Таким образом, в электронно-лучевой установке источник энергии вынесен из объема, где осуществляется технологический процесс, и поэтому в отличие от ВДП и печей ЭШП его мощность можно регулировать независимо от того, что происходит в рабочей камере ЭЛУ. Это позволяет перегревать металл в нужных пределах, осуществлять его выдержку при постоянной температуре, необходимой для глубокой очистки от примесей и газов, проводить операции рафинирования с использованием шлаков. Это дает возможность получить в ЭЛУ металл (главным образом, тугоплавкие металлы и сплавы) более высокого качества по сравнению с

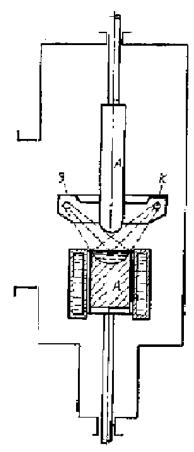


Рис. 5.21. Схема ЭЛУ с кольцевым катодом.

ВДП, где невозможно прекращать наплавление слитка.

Конструкции и области применения ЭЛУ. Наиболее простая конструкция электронной плавильной установки показана на рис.5.21. Это — установка с кольцевым катодом и автоэлектронным нагревом, у которой анодом служит сам расплавляемый металл. Катод К представляет собой нагретую до 2500 К протекающим через нее током вольфрамовую спираль. Анодом А являются расплавляемый электрод и жидкометаллическая ванна, находящаяся в верхней части слитка, который образуется в кристаллизаторе.

Катод окружен молибденовым экраном, находящимся под тем же потенциалом. Электроны, выходящие из катода, отталкиваются экраном и в виде кольцевого пучка устремляются на электрод и жидкометаллическую ванну слитка. Конец электрода под действием бомбардирующих его электронов расплавляется, и металл каплями стекает в ванну. Поднимая и опуская электрод, можно изменять долю попадающих на него электронов, например, приподнять его так, чтобы полностью прекратить его плавление; в этом случае металл в ванне будет перегреваться или выдерживаться при постоянной температуре (в зависимости от тока, а следовательно, и мощности пучка).

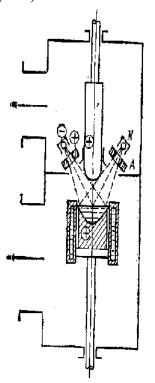


Рис. 5.22. Схема ЭЛУ с радиальными пушками.

Печи с кольцевым катодом работают на напряжении 5-15 кВ. Их преимущество простота устройства и большая проводимость, благодаря чему здесь можно получить токи пучка при низком напряжении. Однако эти печи обладают крупным недостатком; у них катод находится в плавильной камере, поэтому при газовыделении с поверхности ванны он оказывается в зоне повышенного давления. Выходящие из катода электроны, сталкиваясь с частицами газов, ионизируют их; образующиеся положительные ионы направляются к катоду и оседают на нем, при этом происходит отравление катода – сильно снижается его эмиссионная способность и сокращается срок службы. Кроме того, при значительном повышении давления может произойти разряд между электродом и катодом с разрушением последнего.

Ввиду этого плавильные установки с кольцевым катодом имеют ограниченное применение для переплава металлов с малым выделением газов.

Несколько лучше в этом отношении ЭЛУ с радиальными пушками (рис. 5.22), у которых вокруг электрода по радиусам установлено несколько катодов и анодов с отверстиями, через которые движущиеся прямолинейно электроны проходят к концу электрода и к ванне. Таким образом, здесь анод отделен от расплавляемого металла, хотя он и находится под одинаковым потенциалом. Анод является направляющим и формообразующим устройством. Устройство, состоящее из катода и направляющего пучок анода, носит название электронной пушки.

Пространство, в котором находятся электронные пушки, отделено от плавильного пространства перегородкой с отверстиями для электрода и пучков электронов. Верхняя и нижняя части камеры имеют самостоятельные откачные системы. Если выделение газов из ванны значительно увеличивается, то лишь часть паров металла попадает через отверстия в верхнюю камеру и откачивается ее насосом. Поэтому в плавильных установках с радиальными пушками не наблюдается пробоев между катодом и анодом, однако их работа протекает удовлетворительно лишь при плавлении

металлов с ограниченным газовыделением. Радиальные пушки работают с сравнительно низким ускоряющим напряжением (около 15 кВ), поэтому их мощность ограничена, и для создания, например, установки мощностью 150 кВт требуется расположить вокруг электрода девять пушек, что затрудняет управление ими.

Наибольшее распространение в настоящее время в качестве плавильных агрегатов получили ЭЛУ с аксиальными пушками (рис. 5.23).

Аксиальная пушка образует сильно сфокусированный электронный луч. Она имеет два катода. Основной катод К представляет собой массивную вогнутую снизу

вольфрамовую пластину диаметром 2,5-4,0 см, разогреваемую до 2300-2500 К электронной бомбардировкой от вспомогательного катода К₁, выполненного в виде нагреваемой током проволочной вольфрамовой спирали. Между обоими катодами приложено напряжение 3,5-5,0 кВ; вспомогательный катод относительно основного имеет отрицательный потенциал, так что основной катод является анодом для вспомогательного. Анод А имеет специальную форму с тем, чтобы создать в пространстве между ним и катодом такое электрическое поле, которое сфокусировало бы электронный пучок так, чтобы он практически весь проходил через отверстие анода. Выйдя из анода, электронный пучок попадает в лучепровод Л, который соединяет катодную камеру с плавильной камерой установки. В последней находится электрод Э, который может перемещаться горизонтально: его можно вводить под пучок или выводить его конец из-под него.

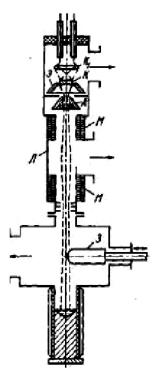


Рис. 5.23. Схема ЭЛУ с аксиальной пушкой.

Часть электронов пучка проходит мимо конца электрода и попадает на поверхность жидкометаллической ванны, расположенной внизу плавильной камеры в кристаллизаторе.

Задача лучепровода — защитить катодный узел от прорыва в него газов из плавильной камеры. Для этой цели лучепровод откачивается своим насосом, помимо насосов, откачивающих катодный узел и рабочую камеру. Диафрагмы внизу лучепровода также затрудняют поступление газов по нему вверх. Так как на своем пути через лучепровод электронный пучок расширяется, производится его дополнительная магнитная фокусировка (сжатие) с помощью магнитных линз (соленоидов).

В настоящее время плавильные электронные установки используются главным образом для переплава стали, молибдена и других тугоплавких и химически высоко-активных металлов. Электронные установки с аксиальными пушками работают при напряжениях 30–40 кВ, сварочные электронно-лучевые установки с особо остросфокусированным лучом работают при напряжениях 70–100 кВ.

Мощность плавильных ЭЛУ составляет от 50 (лабораторные установки) до 2000 кВт, сварочные ЭЛУ имеют мощность в десятки или сотни киловатт.

5.7. Лазерные технологические установки

Основой работы оптического квантового генератора (ОКГ) является генерирование монохроматических волн оптического диапазона под воздействием индуцированного (вынужденного) излучения.

Согласно законам квантовой механики энергия относительного движения любой системы связанных частиц не является произвольной, а принимает определенный ряд значений, которые называются *уровнями энергии* E_0 , E_1 , E_2 и т. д. Весь набор допустимых значений энергий принято называть энергетическим спектром системы.

В состоянии термодинамического равновесия распределение атомов по различным энергетическим уровням подчиняется закону Больцмана:

$$N2/N1 = e^{-(E2-E1)/kT}$$

где N_1 , E_1 ; N_2 , E_2 — соответственно количество и энергия атомов на уровнях 1 и 2; k — постоянная Больцмана; T — температура.

Числа N_1 , N_2 , ..., N_n называют *заселенноствями уровней энергии*. Если на уровне 2 энергия больше, то заселенность этого уровня ниже при любой возможной температуре замкнутой системы. Состояние любой из частиц может изменяться при ее взаимодействии с электромагнитным полем или другими частицами. В этом случае при переходе с высокого уровня энергии E_n на нижний E_m частицы излучают электромагнитные волны, частота которых ν определяется соотношением

$$v = (E_n + E_m)/h , (5.1)$$

где $h = 6,62 \cdot 10^{34}$ Дж · с – постоянная Планка.

При переходах на более высокие энергетические уровни частицы могут поглощать электромагнитные волны такой же частоты.

Электромагнитные волны любой частоты, в том числе и свет, представляют собой поток отдельных порций энергии — квантов или фотонов, энергия которых равна hv. Таким образом, формула (5.1) выражает закон сохранения энергии при взаимодействии фотонов с микрочастицами, по которому энергия излученного или поглощенного фотона определяется изменением энергии частицы. Переходы между состояниями микрочастиц происходят только при взаимодействии с фотонами резонансной частоты v_{nm} , когда $hv_{nm} = E_n + E_m$.

Согласно квантовой теории Эйнштейна процесс взаимодействия электромагнитных волн с веществом состоит из трех элементарных актов поглощения фотона, а также его спонтанного или индуцированного излучения. Если микрочастица находится в возбужденном состоянии, а ее энергия превышает минимально допустимое значение E_0 , то такое состояние не может сохраняться в течение значительного времени. Даже полностью изолированная от внешней среды возбужденная частица через некоторое время перейдет в состояние с меньшей энергией, при этом переходе она испускает фотон. Такой переход называют самопроизвольным, или спонтанным, излучением.

Спонтанное излучение носит шумоподобный характер. Отдельные акты спонтанного излучения различными частицами происходят случайно. Момент излучения кванта каждой из возбужденных частиц, направление его движения и поляризация не связаны с актами испускания квантов другими такими же частицами. Все традиционные источники света (нагретые тела, плазма газовых разрядов) дают спонтанно излучаемый свет.

Иначе происходит процесс *индуцированного излучения*. Если возбужденная частица находится под воздействием внешних электромагнитных волн резонансной частоты, то она может перейти в состояние с меньшей энергией. При этом она испускает квант, не отличимый от приходящих извне, т. е. имеющий такую же частоту, поляризацию и направление распространения. Вероятность испускания индуцированного излучения пропорциональна интенсивности внешнего излучения — числу квантов в единицу времени. Фаза возникающих при индуцированных переходах электромагнитных волн строго согласована с фазой внешних волн. Поток индуцированного излучения отличается от первичного только возросшей интенсивностью.

Однако в любой находящейся в термодинамическом равновесии или вблизи его колонии частиц заселенности более высоких уровней энергии меньше заселенности уровней, расположенных ниже. Поэтому процессы поглощения квантов происходят чаще, чем индуцированное излучение. По этой же причине электромагнитные волны резонансной частоты, взаимодействуя с такими частицами, рассеивают свою энергию и затухают.

Чтобы индуцированное излучение преобладало над поглощением, необходимо за счет внешних сил вывести систему частиц из состояния термодинамического равновесия. При этом за счет внешнего источника энергии создается более высокая заселенность одного из возбужденных состояний, чем заселенность хотя бы одного из состояний с меньшей энергией, т. е. создается *инверсная заселенность* в системе микрочастиц. И лишь в этом случае состоящая из таких частиц среда становится активной, т. е. способной усиливать волны резонансной частоты.

В любом ОКГ используется явление индуцированного излучения среды, поддерживаемой в состоянии с инверсной заселенностью уровней за счет работы стороннего источника энергии. Принцип работы ОКГ рассмотрим на примере конструкции лазера с рубиновым стержнем (рис. 5.24).

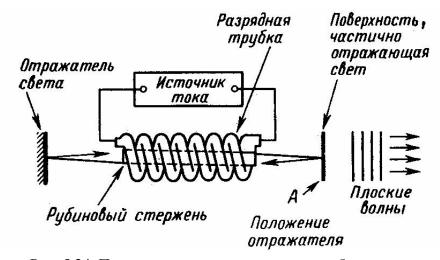


Рис. 5.24. Принципиальная схема лазера с рубиновым стержнем

Синтетический рубиновый стержень представляет собой плавленый оксид алюминия с добавкой (0,04–0,05%) атомов трехвалентного хрома.

Атомы хрома, находящиеся в состоянии покоя на нижнем энергетическом уровне, под действием испускаемых импульсной лампой фотонов возбуждаются и переходят на более высокий энергетический уровень. Для изготовления лазеров подбирают такие вещества, атомы которых переходят из возбужденного состояния в основное не сразу, через промежуточное метастабильное состояние. Атомы находятся в этом состоянии до тех пор, пока они не будут вынуждены перейти в основное состояние. Длина волны излучаемого света при переходе из метастабильного состояния в основное равна длине волны света, благодаря которому этот переход стал возможен. В лазерах достаточно лишь одному атому перейти из метастабильного состояния в основное и испустить при этом фотон, как это стимулирует такой же переход других атомов.

Весь процесс излучения света лазером происходит в два этапа, как показано на энергетической диаграмме (рис.5.25). Три горизонтальные линии на этом рисунке соответствуют трем энергетическим уровням системы, а стрелками обозначены возможные переходы между ними. Нижний уровень соответствует основному состоянию атома, верхний – возбужденному, а средний – метастабильному.

Если подействовать на находящиеся в метастабильном состоянии атомы квантами световой энергии, частота которых равна частоте перехода из метастабильного состояния в основное, то атомы мгновенно переходят в основное состояние, излучая при этом световую энергию.

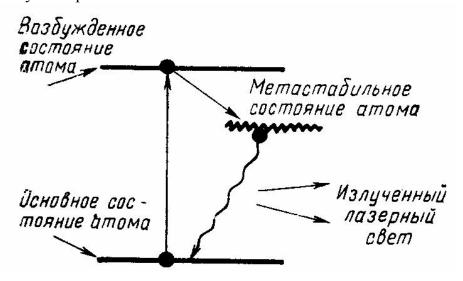


Рис. 5.25. Энергетическая диаграмма системы частиц

Таким образом, метастабильное состояние атомов является определяющим в работе лазера. Процесс перевода атомов в метастабильное состояние осуществляется с помощью подсветки разрядной трубки и представляет собой процесс заселения метастабильного уровня.

При вспышке разрядной трубки, подключенной к источнику питания, возбуждается активный элемент – рубиновый стержень. Возникший в нем луч усиливается,

многократно отразившись от световых экранов, и выходит через поверхность, частично отражающую свет, в виде когерентного светового излучения. *Когерентным* называют излучение с одной частотой, одним направлением и с одинаковыми фазами или постоянной разностью фаз.

Основные процессы, происходящие в активном веществе лазера, при его освещении импульсной вспышкой показаны на рис.5.26. Находящиеся в невозбужденном состоянии атомы хрома (на рисунке они показаны черными точками) под действием фотонов (стрелки на рисунке) переходят в возбужденное состояние (белые точки) (рис.5.26,*a*). После поглощения импульса света возбужденные атомы хрома переходят на более низкий уровень, излучая при этом избыток энергии в форме электромагнитных колебаний, в том числе и в видимой области спектра.

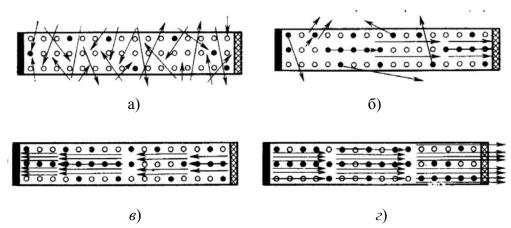


Рис. 5.26. Схема основных процессов, происходящих в активном веществе лазера при его облучении импульсной вспышкой

Часть излучаемой атомами энергии рассеивается наружу через стенки стержня (рис. 5.26, δ). Другая часть , направленная в виде фотонов параллельно оси стержня (рис. 5.26, δ – ϵ), по пути своего движения вызывает цепную реакцию образования новых фотонов за счет взаимодействия с находящимися в стержне возбужденными атомами. Возникший поток световой энергии многократно отражается от отражателей на концах рубинового стержня, лавинообразно нарастает при каждом отражении и в конечном счете в виде мощного светового луча выходит из торца стержня в том месте, где отражатель имеет меньшую толщину (штриховка на рис.5.26). Если теперь на пути этого светового потока поставить линзу, то всю энергию потока можно сфокусировать на очень маленькой площади.

Наименьший теоретически возможный диаметр площадки, на которой можно сфокусировать монохроматическое излучение, равен длине его волны λ при условии, что диаметр входного отверстия объектива D=2,26F, где F – фокусное расстояние.

Основы технологии светолучевой обработки

Технологические генераторы когерентного светового излучения (в основном газовые и твердотельные) имеют мощность непрерывного излучения до нескольких сотен киловатт и энергию отдельного импульса до нескольких сотен джоулей. Хотя они имеют большие габаритные размеры, потребляют значительную мощность,

сложны в изготовлении и эксплуатации, однако их использование дает ряд технологических преимуществ, определяющих их широкое применение:

1) возможность передачи энергии в виде светового луча на расстоянии в любой оптически прозрачной среде; 2) отсутствие механического и электрического контакта между источником энергии с изделием в месте обработки; 3) наличие высокой концентрации энергии в пятне нагрева; 4) возможность плавной регулировки плотности лучистого потока в пятне нагрева изменением фокусировки луча; 5) возможность получения как импульсов энергии весьма малой длительности (до 10 с), так и непрерывного излучения перемещением луча с высокой точностью и скоростью с помощью систем развертки при неподвижном объекте обработки.

Особенностью лазерной обработки является интенсивный локальный разогрев обрабатываемого материала. Интенсивность нагрева определяется глубиной проникновения излучения в материал δ и толщиной прогретого путем теплопроводимости слоя $\sqrt{\alpha \tau}$, где a — температуропроводность материала; τ — длительность воздействия лазерного излучения. Для металлов, когда δ << $\sqrt{\alpha \tau}$, источник теплоты является поверхностным.

Процесс взаимодействия лазерного излучения с обрабатываемым материалом можно разделить на следующие стадии: поглощение света с последующей передачей энергии тепловым колебанием решетки твердого тела; нагрев материала без разрушения, включая и плавление; разрушение материала путем испарения и выброса его расплавленной части; остывание после окончания воздействия.

При термообработке и сварке различных материалов используются нагрев и плавление, а тепловое разрушение и выброс расплавленной части доминируют в процессах резки и сверления отверстий.

В зависимости от назначения в состав лазерной технологической установки, кроме лазера, могут входить оптико-механический блок устройства управления лазерным излучением, устройство измерения и стабилизации параметров излучения, блок охлаждения, устройство автоматики, сигнализации и т. д. Структурная схема промышленной лазерной установки показана на рис. 5.27.

В зависимости от конструктивных особенностей и конкретных условий в реальных установках могут отсутствовать или быть совмещены те или иные устройства и узлы.

Мощные лазеры применяются в технологических процессах обработки различных материалов. В частности, с их помощью производят сварку, закалку, резку и сверление различных материалов без возникновения в них механических напряжений и с очень большой точностью, вплоть до нескольких длин световых волн. Лазерами обрабатывают материалы практически любой твердости, металлы, алмазы, рубины и т. д.

Газолазерная резка основана на разделении материала под воздействием выделяющейся в нем теплоты с поддувом — в зону резки газа, который удаляет продукты разрушения и инициирует при разделении материалов химическую реакцию. Этот способ резки целесообразен для обработки дорогих металлов и сплавов, поскольку из-за небольшой ширины реза ей свойственны минимальные отходы. Она широко применяется в электронной и микроэлектронной промышленности при производстве полупроводниковых приборов и интегральных схем. Успешно приме-

няется лазерная резка в текстильной промышленности. Разработаны технологические процессы лазерного изготовления глухих и сквозных отверстий при изготовлении алмазных фильер и рубиновых часовых камней.

Лазерная сварка наиболее эффективна в микроэлектронике. С ее помощью производят соединение плоских выводов с монтажом печатных плат. Лазерная сварка применяется и при герметизации металлических корпусов интегральных схем. Высокая локальность и кратковременность нагрева при импульсной лазерной сварке позволяет понизить температуру в наиболее чувствительных к нагреву элементов интегральной схемы.

С помощью лазерной сварки можно соединять металлы с различными теплофизическими и химическими свойствами, а также с неметаллами. Она может применяться для сварки крупногабаритных деталей и узлов.

Термическое действие лазерного излучения может быть применено для микродефектов закалки И поверхностного упрочнения («залечивание»

оплавлением) быстроизнашивающихся металлидеталей, ческих ДЛЯ создания р-п-переходов производстве полупроводниковых приборов, для интенсификации процессов локального окисления и восстановления; ДЛЯ получения тонких пленок путем испарения материалов вакууме и т. д.

Лазерное излучение абсолютно стерильно, поэтому оно используется в медицине для глазных опе-раций, при а также в сельском хо-

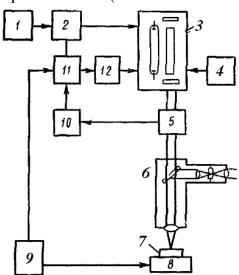


Рис. 5.28. Структурная схема промышленной лазерной установки: 1 - зарядное устройство, 2 - емкостный накопитель, 3 - лазерная головка, 4 - система охлаждения, 5 - датчик энергии излучения, 6 - оптическая система, 7 - изделие, 8 - предметный столик, 9 - система программного управления, 10 - система стабилизации остановке кровотечений, энергии излучения, 11 - система управления, 12 - блок поджига.

зяйстве для предпосевной обработки семян.

Высокая мощность и экономичность СО2-лазеров делают возможным их использование для разрушения сверхпрочных горных пород при работах в шахтах и тоннелях.

Новые химические реакции, новые химические продукты, ускорение и удешевление химических реакций, разделение изотопов - вот неполный перечень тех преимуществ, которые может дать применение лазеров в химической технологии.

Вопросы для самопроверки

- 1. Область применения дуговых печей.
- 2. Электрооборудование и конструктивные элементы ДСП.
- 3. Основные элементы короткой сети ДСП.
- 4. Требования, предъявляемые к короткой сети ДСП.
- 5. Перенос мощности, явление «дикой» и «мертвой» фазы. Способы уменьшения переноса мощности.
- 6. Векторная диаграмма токов и напряжений для двух фаз многоамперной трехфазной сети.
- 7. Физическое объяснение поверхностного эффекта, эффекта близости, эффекта переноса мощности.
 - 8. Методы регулирования мощности ДСП.
 - 9. Схема замещения цепи с электрической дугой.
 - 10. Классификация дуговых электрических печей.
 - 11. Электрические характеристики дуговых сталеплавильных печей.
 - 12. Энергетические характеристики дуговых сталеплавильных печей.
 - 13. Электромагнитное перемешивание металла.
- 14. Основные требования, предъявляемые к регуляторам дуговых сталеплавильных печей.
- 15. Быстродействующий тиристорный регулятор привода перемещения электродов дуговых сталеплавильных печей.
 - 16. Требования электродуговых печей к системам электроснабжения.
- 17. Особенности горения электрической дуги на переменном и постоянном токе.

ЗАКЛЮЧЕНИЕ

Современные электротехнологические установки стимулируют получение новых материалов, выдерживающих более высокие напряжения, температуры, обладающих высокими эмиссионными свойствами и т. д.

Эти материалы широко используются для создания нового поколения электротехнологических установок с более высокими возможностями. Происходит взаимное совершенствование, позволяющее глубже проникнуть в природу материи и создать на этой основе динамично развивающую науку — электротехнологию.

Обещает быть плодотворным взаимодействие электрических и магнитных полей в веществе, а также влияние электромагнитных излучений на биологическую среду. Пособие предназначено для студентов электроэнергетического направления, а также может быть полезно инженерно-техническим работникам заводов и проектных институтов.

Задачи к курсу «Электротехнологические установки»

Тема: Расчет нагревательных элементов электрических печей сопротивления (ЭПС)

Нагревательное элементы (НЭ) изготовляют из жаростойких материалов с высоким удельным сопротивлением. Различают металлические, металлокерамические и карборундовые НЭ. Основные характеристики материалов для нагревателей приведены в [4] табл. 1.6. Металлокерамические и карборундовые НЭ применяют в высокотемпературных ЭПС. Металлические НЭ – в низкотемпературных. По конструкции они делятся на зигзаг проволочный или ленточный и спираль (рис. П.1). Оптимальной конструкцией НЭ с точки зрения срока службы является зигзаг проволочный. Но зигзаг из-за низкого электрического сопротивления подключают через понижающие трансформаторы, что приводит К дополнительным потерям. Преимуществом спирального НЭ является возможность его подключения непосредственно к цеховой электрической сети, недостатком – отсутствие строго фиксированного шага, что может привести к местным перегревам, замыканию витков и выходу из строя. Принцип действия нагревателей ЭПС основан на явлении нагрева проводника, включенного в электрическую цепь.

Количество тепла Q, выделяемое при прохождении электрического тока, определяется в соответствии с законом Джоуля-Ленца.

$$Q = I^2 R t = U I t = \frac{U^2}{R} t (B_T \cdot c; Дж) =$$

$$= 0,239 \cdot 10^{-3} I^2 R t (ккал) = 0,278 \cdot 10^{-6} I^2 R t (кB_T),$$
(П.1)

где I – ток, протекающий через нагреватель, A,

R — сопротивление нагревателя, Ом,

U – напряжение, приложенное к нагревателю, B,

t – время прохождения тока, с.

Тепловая энергия с поверхности нагревателя посредством излучения и конвекции передается нагреваемому изделию. Мощность, излучаемую НЭ с единицы поверхности, называют *удельной поверхностной мощностью нагревателя* W. Идеальный НЭ получим, если представить, что тепловые потери отсутствуют и все тепло передается нагреваемому телу.

$$W_{u\partial} = C_{np} \left[\left(\frac{T_{u}}{100} \right)^4 - \left(\frac{T_{u3\partial}}{100} \right)^4 \right], \quad (\frac{\kappa Bm}{M^2})$$
(II.2)

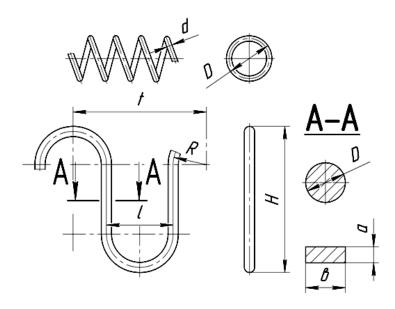


Рис. П.1. Конструкция нагревательных элементов а – проволочная спираль; б – проволочный и ленточный зигзаг

где $T_{\it h}$, $T_{\it uso}$ — соответственно, температура нагревателя и изделия, К; $C_{\it np}$ — приведенный коэффициент излучения:

$$C_{np} = \frac{5.7}{1/\varepsilon_{_{\scriptscriptstyle H}} + 1/\varepsilon_{_{\scriptscriptstyle U3\partial}} - 1},$$

 $\mathcal{E}_{u_{3\partial}}, \mathcal{E}_{\scriptscriptstyle H}$ — коэффициенты теплового излучения материала нагревателя и изделия.

Но изделию передается не все тепло (потери тепла, не вся поверхность НЭ участвует в теплообмене), поэтому реальная удельная поверхностная мощность:

$$W = C_{\vartheta \phi} W_{u \vartheta}, \tag{\Pi.3}$$

где $C_{9\phi} = 0.3 - 0.8$ – коэффициент эффективности излучения, зависящий от размеров НЭ, их расположения в печи, условий теплоотдачи.

Удельная поверхностная мощность определяет при заданной температуре нагрева рабочую температуру НЭ, от которой зависит срок их службы.

Под сроком службы НЭ понимают время его работы при заданной температуре, в течение которого его токопроводящее сечение уменьшится вследствие окисления на 20%, для металлических — это около 10 тыс. часов, для металлокерамических и карборундовых — около 2 тыс. часов.

Для определения размеров (сечения и длины) и размещения НЭ в камере печи выполняют следующий расчет:

• по рабочей температуре в печи (максимальная температура нагрева изделия $T_{us\partial max}$) выбирается материал НЭ [4] табл. 1.6. Рабочая температура нагревателя принимается на $50-200~^{\circ}C$ выше температуры изделия.

$$[T_{u3\partial} + (50 \div 200)] \le T_{H};$$
 (II.4)

- для выбранного материала с учетом его рабочей температуры и температуры нагрева изделия вычисляют по формуле (П.2) удельную поверхностную мощность идеального НЭ;
- с учетом коэффициента эффективности $C_{9\phi}$, по формуле (П.3) вычисляют удельную поверхностную мощность реального НЭ;
- в стационарном режиме при заданной температуре к нагревателю подводится электрическая мощность (Вт)

$$P = \frac{U^2}{R} = \frac{U^2}{\rho \frac{l}{S}},\tag{II.5}$$

которая равна тепловой мощности, отдаваемой поверхностью нагревателя изделию

$$P = WF = W\Pi l, \tag{\Pi.6}$$

где ρ – удельное сопротивление материала нагревателя при рабочей температуре, Ом·м,

l – длина нагревателя, м,

S – сечение нагревателя, M^2 ,

W — удельная поверхностная мощность нагревателя, рассчитанная по формуле (П.6), B_T/M^2 ,

F – площадь поверхности нагревателя, M^2 ,

 Π – периметр НЭ, м;

• решая совместно (П.3) и (П.6) и, принимая во внимание, что для НЭ круг-

лого сечения
$$\Pi=\pi d$$
 , а $S=\frac{\pi d^2}{4}$, получим
$$d=\sqrt[3]{\frac{4P^2\rho}{\pi^2U^2W}}, \tag{\Pi.7}$$

где d – диаметр НЭ, м.

Окончание прил.

Выбирается ближайший стандартный диаметр из шкалы , мм 2,0; 2,2; 2,5; 2,8; 3,2; 3,6; 4,0; 4,5; 5,0; 5,6; 6,3; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20;

• для нагревателей прямоугольного сечения задаются соотношением сторон b/a=m=10. Толщина полосы (м)

$$a = \sqrt[3]{\frac{P^2 \cdot \rho}{2m(m+1)U^2W}}.$$
(II.8)

Выбирается ближайшее стандартное сечение НЭ из шкалы, мм 2×10 ; $1,5\times15$; 2×15 ; $2,2\times20$; $2,5\times20$; 3×20 ; $2,2\times25$; $2,5\times25$; 3×25 ; $2,2\times30$; $2,5\times30$; 3×30 ; $2,2\times36$; $2,5\times36$; 3×36 ; $2,2\times40$; $2,5\times40$; 3×40 ;

• рассчитывается активное сопротивление нагревателя, его длина и вес

$$G = S \cdot l \cdot \gamma, \tag{\Pi.9}$$

где G – вес НЭ, кг, γ – плотность материала НЭ, кг/м³. Следует учесть, что расчет НЭ ведется для одной фазы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Крежевский, Ю. С. Методические указания к проведению лабораторных работ по дисциплине «Электротехнологические установки» / Ю. С. Крежевский, Д. А. Ребровская. Ульяновск : УлГТУ, 2015. 61 с.
- 2. Алферова, Т. В. Промышленная электротехнология / Т. В. Алферова. Гомель : ГТУ, 2008.-108 с.
- 3. Болотов, А. В. Электротехнологические установки / А. В. Болотов, Г. А. Шепель. Москва : Высш. шк., 1988. 335 с.
- 4. Шеховцов, В. П. Электрическое и электромеханическое оборудование / В. П. Шеховцов. Москва : Форум-ИНФРА-М, 2004.-408 с.

Учебное электронное издание ЭЛЕКТРОТЕХНОЛОГИЧЕСКИЕ УСТАНОВКИ

Учебное пособие

Составитель КРЕЖЕВСКИЙ Юрий Степанович Редактор Н. А. Евдокимова

ЛР № 020640 от 22.10.97.

ЭИ №980. Объем данных 2,9 Мб. Печатное издание Подписано в печать 31.10.2016. Формат 60×84/16. Усл. печ. л. 4,88. Тираж 60 экз. Заказ № 999. Ульяновский государственный технический университет 432027, г. Ульяновск, ул. Сев. Венец, д. 32. ИПК «Венец» УлГТУ, 432027, г. Ульяновск, ул. Сев. Венец, д. 32.

Тел.: (8422) 778-113 E-mail: venec@ulstu.ru venec.ulstu.ru