МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ, НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИ-ТИКИ И РЫБОХОЗЯЙСТВЕННОГО КОМПЛЕКСА ФГБОУ ВО КОСТРОМСКАЯ ГСХА

Кафедра тракторов и автомобилей

ГИДРАВЛИКА

Рабочая тетрадь для выполнения лабораторных работ

для студентов, обу	учающихся по направлению подготовки:
	35.03.06 Агроинженерия
направленность:	Информационные технологии в электроэнергетике;
	Электрооборудование и электротехнологии;
	всех форм обучения

Студент——-

Курс———

Группа———

КАРАВАЕВО Костромская ГСХА 2021 УДК 631.3.033 ББК 34.447 Г 46

Составители: администратор баз данных УМУ ФГБОУ ВО Костромская ГСХА В.Н. Куклин; к.т.н., доцент кафедры тракторов и автомобилей ФГБОУ ВО

Костромской ГСХА И.Л. Соколов.

Рецензент: д-р техн. наук, доцент кафедры тракторов и автомобилей Костромской ГСХА А.Н. Зинцов.

Рекомендовано методической комиссией электроэнергетического факультета в качестве рабочей тетради для выполнения лабораторных работ по дисциплине «Гидравлика» для студентов, обучающихся по направлению подготовки: 35.03.06 Агроинженерия, направленность: информационные технологии в электроэнергетике; электрооборудование и электротехнологии всех форм обучения.

Г 46 Гидравлика : рабочая тетрадь по выполнению лабораторных работ / сост. В.Н. Куклин, И.Л. Соколов. — Караваево : Костромская ГСХА, 2021. — 50 с.

Издание содержит название работ, схемы опытных установок, таблицы, место для расчетов, графиков и выводов, а также контрольные вопросы, предназначено для контактной и самостоятельной работы при изучении дисциплины «Гидравлика» для студентов, обучающихся по направлению подготовки: 35.03.06 Агроинженерия, направленность: информационные технологии в электроэнергетике; электрооборудование и электротехнологии всех форм обучения.

УДК 631.3.033 ББК 34.447 Г 46

© ФГБОУ ВО Костромская ГСХА, 2021 © В.Н. Куклин, составление, 2021 © И.Л. Соколов, составление, 2021

СОДЕРЖАНИЕ

Общие указания к выполнению лабораторных работ	4
Требования, предъявляемые к студентам при защите отчетов о лабораторных работах	5
Техника безопасности при проведении лабораторных работ	6
ЛАБОРАТОРНАЯ РАБОТА № 1	7
ЛАБОРАТОРНАЯ РАБОТА № 2	11
ЛАБОРАТОРНАЯ РАБОТА № 3	15
ЛАБОРАТОРНАЯ РАБОТА № 4	19
ЛАБОРАТОРНАЯ РАБОТА № 5	23
ЛАБОРАТОРНАЯ РАБОТА № 6	27
ЛАБОРАТОРНАЯ РАБОТА № 7	30
ЛАБОРАТОРНАЯ РАБОТА № 8	34
ЛАБОРАТОРНАЯ РАБОТА № 9	38
ЛАБОРАТОРНАЯ РАБОТА № 10	42
Литература	46
Приложения	47

Общие указания к выполнению лабораторных работ

Лабораторная работа — это экспериментальная проверка основных теоретических положений изучаемой дисциплины. Как правило, эксперимент, проводимый при выполнении лабораторной работы, наглядно подтверждает основные положения, изложенные в лекциях и на практических занятиях. Кроме этого, проведение эксперимента закладывает основы научного мировоззрения, способность к исследовательской работе.

Экспериментальное решение практических задач по гидравлике и водоснабжению очень важно, так как ввиду большого разнообразия факторов, влияющих на закономерность протекания физических процессов в жидкостях, затрудняется понимание их сущности, а, следовательно, и понимание всей дисциплины.

Практические опыты имеют своей целью научить студента исследованиям физических явлений, происходящих в жидкостях, а также развить способность к самостоятельной обработке и оценке, полученных экспериментальных данных.

Результаты проведенных лабораторных работ записываются в тетрадь. В каждой работе указывается цель опыта, схема опытной установки, расчетные формулы, обработка опытных данных в табличной форме и в виде графика, выводы по работе. Числовые величины даются с точностью до 0,1%. В выводах по работе отмечается соответствие полученных результатов с теорией или наличие отклонения.

Лабораторная работа оформляется пастой или чернилами черного, или синего цвета в соответствии с требованиями ГОСТа. Схемы, графики и таблицы вычерчиваются карандашом.

Выполнение лабораторных работ обязательно для каждого студента.

Требования, предъявляемые к студентам при защите отчетов о лабораторных работах

- 1. Отчет о работе должен быть предъявлен в законченной форме. Все записи, схемы опытных установок, графики выполнены аккуратно. В вычислениях не должно быть арифметических ошибок. Работа должна содержать выводы.
- 2. Студент должен знать содержание выполненной работы в такой мере, чтобы, не пользуясь отчетом о работе, мог дать исчерпывающие разъяснения о задаче данной лабораторной работы, привести необходимые теоретические обоснования ее решения экспериментальным путем, а затем пользуясь уже своими записями, рассказать о методике проведения опытов и порядке произведенных вычислений.

При защите лабораторной работы студент должен показать знание основных положений гидравлики, удерживая в памяти, кроме формул, прямо относящихся к данной работе, все основные понятия, определения и основные формулы гидравлики (уравнение Бернулли, уравнение постоянства расхода, формулы для определения гидравлических сопротивлений и т.д.) в рамках пройденного ко времени выполнения данной лабораторной работы материала курса.

Техника безопасности при проведении лабораторных работ

- 1. К выполнению лабораторных работ допускаются только лица, прошедшие инструктаж по технике безопасности.
- 2. Запрещается самостоятельно включать и выключать лабораторные установки.
- 3. Не рекомендуется без необходимости прикасаться к металлическим частям установок с электроприводом во время работы.
- 4. Рекомендуется проводить эксперименты в рабочей одежде, чтобы избежать загрязнений от водяных брызг.
- 5. При осмотре стендов и наглядных пособий следует соблюдать осторожность во избежание травм.
- 6. Запрещается проводить не предусмотренные правилами работы эксперименты.
- 7. Запрещается пользоваться открытым огнем и курить.

ИЗМЕРЕНИЕ ГИДРАВЛИЧЕСКИХ ПАРАМЕТРОВ ПОТОКА ЖИДКОСТИ

Цель работы:

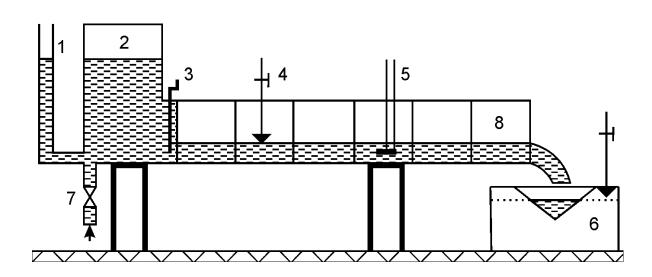
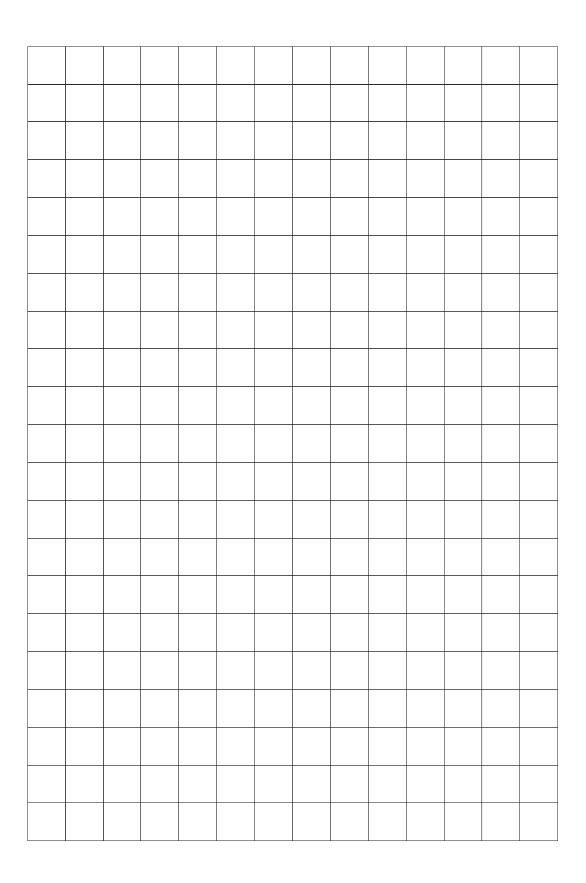



Рис. 1.1. Схема установки для определения гидравлических параметров потока: 1 - пьезометр; 2 - бак; 3 - задвижка; 4 - уровнемер; 5 - трубка Пито; 6 - водослив; 7 - впускной кран; 8 - лоток

Таблица 1.1. Таблица опытных данных и вычисленных результатов

		ē		Номер опыта	
	Наименование показателя	Обозначение	1	2	3
	Ширина лотка, м	В	0,26	0,26	0,26
	Отметка дна, м	$Z_{\rm ДH}$			
)K	Отметка поверхности воды, м	Zпов			
Лоток	Глубина воды, м	h			
5	Площадь живого сечения, м ²	ω			
	Смоченный периметр, м	χ			
	Гидравлический радиус, м	R			
	Отметка нуля водослива, м	Z_0			
пив	Отметка поверхности воды, м	$Z_{\scriptscriptstyle \mathrm{BJ}}$			
Водослив	Напор на водосливе, м	Нв			
Bo,	Расход воды, м ³ /с	Q			
	Средняя скорость, м/с	υ			
ಡ	Уровень воды в правой трубке, м	$Z_{\pi p}$			
Трубка Пито	Уровень воды в левой трубке, м	Z_{π}			
[] [] []	Разность уровней, м	Δh			
·	Максимальная скорость, м/с	υ			
OK	Расстояние между створами, м	L			
Поплавок	Время прохождения створов, с	t			
Щ	Поверхностная скорость, м/с	υ			

Вывод:			

Работу выполнил:

Работу принял:

Контрольные вопросы:

- 1. Назначение, устройство и принцип работы трубки Пито.
- 2. Параметры потока жидкости.
- 3. Понятие средней скорости потока.
- 4. Назначение, типы водосливов, формулы для расчета.
- 5. Уравнение неразрывности потока жидкости. Его физический смысл.
- 6. Как меняется скорость по живому сечению потока при ламинарном и турбулентном движении жидкости в трубе, в канале?
- 7. Какие признаки установившегося и неустановившегося, равномерного и неравномерного, напорного и безнапорного движения жидкости?
- 8. Способы определения скорости потока жидкости.
- 9. Способы определения расхода жидкости.
- 10. Что такое линия тока, трубка тока, элементарная струйка, поток жид-кости?

ИССЛЕДОВАНИЕ УРАВНЕНИЯ Д. БЕРНУЛЛИ

Цель работы:

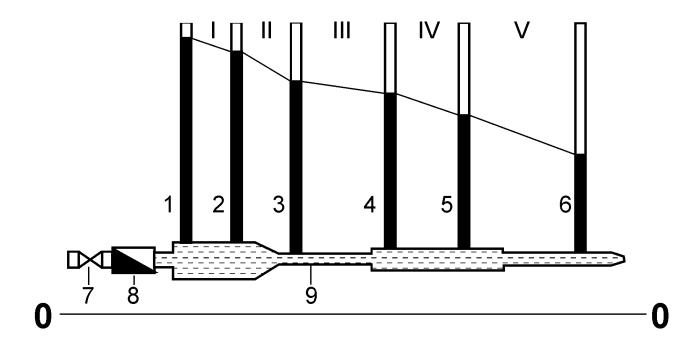


Рис. 2.1. Опытная установка: 1...6 - пьезометры; I...V - номера участков; 7 - регулировочный вентиль; 8 - счетчик; 9 - труба переменного сечения

Данные для расчета:
Время замера, с
Объем воды, м ³
Расход воды, м ³ /с

Опытные данные и вычисленные результаты.

Таблица 2.1.

	ие				Сечения	I		
Наименование измеря- емых величин	Обозначение	1	2	3	4	5	6	7
1. Диаметр сечения, м	d	0,090	0,037	0,080	0,080	0,032	0,032	0,040
2. Площадь живого сечения, м ²	ω							
3. Средняя скорость, м/с	υ							
4. Скоростной напор, м	$\frac{v^2}{2g}$							
5. Статический напор, м	$z + \frac{p}{\gamma}$							
6. Полный напор, м	$z + \frac{p}{\gamma} + \frac{v^2}{2g}$							
7. Потери напора, м	h	_						
8. Гидравлический уклон	i	_						
9. Пьезометрический уклон	Ι	_						
10. Длина участков, м	L	_						

Вывод:	
Работу выполнил:	Работу принял:

Контрольные вопросы:

- 1. Физическая сущность коэффициента Кориолиса в уравнении Бернулли для потока жидкости.
- 2. Вид уравнения Бернулли для потока реальной жидкости, идеальной жидкости, элементарной струйки.
- 3. Вид уравнения для потока жидкости в открытых руслах.
- 4. Что такое статический напор жидкости? Как его определить?
- 5. Что такое динамический напор жидкости? Как его определить?
- 6. Что такое напорная и пьезометрическая линии?
- 7. Что такое гидравлический, пьезометрический и геодезический уклоны?
- 8. Геометрический смысл уравнения Бернулли.
- 9. Энергетический и физический смысл уравнения Бернулли.
- 10.Покажите все члены уравнения Бернулли графически для потока жидкости в трубе.

ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОГО ЧИСЛА РЕЙНОЛЬДСА И ПРОВЕРКА ЗАКОНА СОПРОТИВЛЕНИЯ ПО ДЛИНЕ ПРИ ЛАМИНАРНОМ И ТУРБУЛЕНТНОМ РЕЖИМЕ ДВИЖЕНИЯ ЖИДКОСТИ

Цель работы:

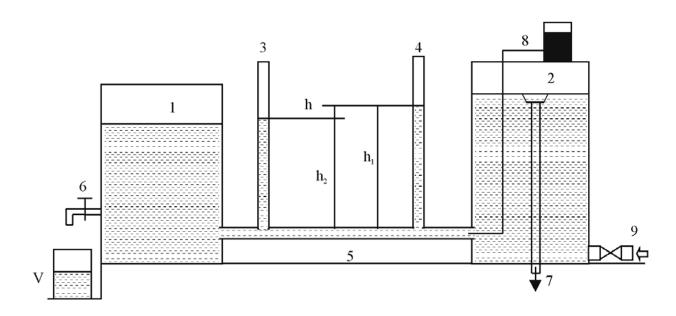


Рис. 3.1. Установка для определения зависимости потерь от скорости и определения критического числа Рейнольдса: 1, 2 - резервуары; 3, 4 - пьезометры; 5 - стеклянная трубка; 6 - регулировочный кран; 7 - сливная трубка; 8 - устройство для подвода красителя; 9 - впускной кран

Таблица 3.1 Таблица опытных данных и вычисленных результатов.

Наименование	Обозна	Номер опыта											
показателя	чение	1	2	3	4	5	6	7	8				
1. Время, с	t												
2. Расход, м ³ /с	Q												
3. Скорость, м/с	υ												
4. Показания 1-го пье- зометра, м	h ₁												
5. Показания 2-го пьезометра, м	h ₂												
6. Потери напора, м	h												
7. Десятичный лога- рифм скорости	lgυ												
8. Десятичный лога- рифм потерь напора	lg h												
9. Число Рейнольдса	Re												

Вывод:	
Работу выполнил:	Работу принял:
Контроль	ные вопросы:
1. Виды режимов движения жидкости	И.
2. Что такое число Рейнольдса?	

трубе, для открытых русел.

6. Как влияет режим движения жидкости на потери напора?

7. Как определить потери напора при ламинарном режиме движения?

3. Какая связь между потерями напора и скоростью движения жидкости?

5. Величина критического числа Рейнольдса для движения жидкости в

8. Влияние чисел Рейнольдса на потери напора.

4. Методика определения числа Рейнольдса.

- 9. Как влияет температура жидкости на потери напора?
- 10. Какая связь между потерями напора и потерями давления?

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА СЖАТИЯ, СКОРОСТИ И РАСХОДА ПРИ ИСТЕЧЕНИИ ИЗ МАЛОГО ОТВЕРСТИЯ В ТОНКОЙ СТЕНКЕ И ВНЕШНЕГО ЦИЛИНДРИЧЕСКОГО НАСАДКА ПРИ ПОСТОЯННОМ НАПОРЕ

Цель работы:

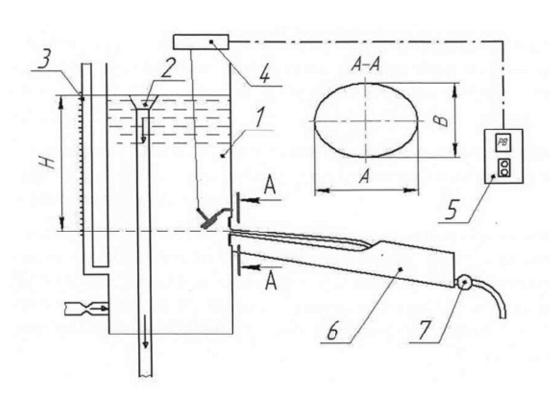


Рис. 4.1. Схема опытной установки: 1 -резервуар; 2 -сливная труба; 3 - пьезометр; 4 - исполнительный механизм; 5 - блок управления; 6 - приемный резервуар; 7 - счетчик.

Таблица 4.1.

Опытные и расчетные данные

		си	Измерение расхода				_		s, M ²	M/C	Коэффициенты									
					атели	ители 3	я, м ³	I, M ³ /c	центром гия, м	отверстия ки, м	ие, м ²	сечение			ости, Ф	Сжат	гия, є	Pacx	кода,	ение,
Вид вставки	А, м	В, м	Начальные показатели счетчика, м ³	Конечные показатели счетчика, м ³	Объем истечения	Расход истечения	Напор над центр отверстия, м	Диаметр отве вставки,	Живое сечение	Сжатое живое с	Скорость истечения,	Опытные	Табличные	Опытные	Табличные	Опытные	Табличные	Сопротивление,		
Круглое отверстие								0,025												
Внешний цилиндрический насадок	_	_						0,0254		_										

Вывод:

Контрольные вопросы:

- 1. Как рассчитать расход жидкости через отверстие или насадок?
- 2. Как влияет напор на время истечения жидкости через отверстие?
- 3. Каков расход жидкости через отверстие и насадок при одинаковых параметрах истечения?
- 4. Какое влияние оказывает вязкость жидкости на истечение?
- 5. Что называется насадком?
- 6. Виды насадков и их назначение.
- 7. Причины образования вакуума в насадке и его влияние на истечение жидкости.
- 8. Истечение при переменном напоре через отверстие. Время истечения.
- 9. Виды сжатия струи. Коэффициент сжатия.
- 10.Почему формулы истечения действительны только для малого отверстия в тонкой стенке?

ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКОГО ТРЕНИЯ ПРИ ДВИЖЕНИИ ЖИДКОСТИ В КРУГЛЫХ ТРУБАХ

Цель работы:

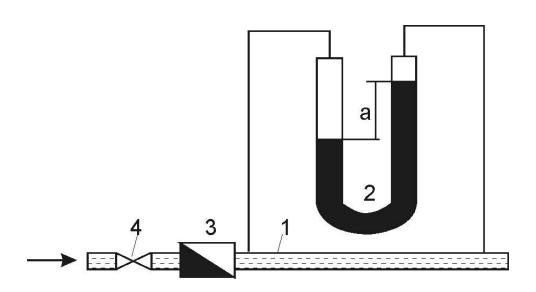
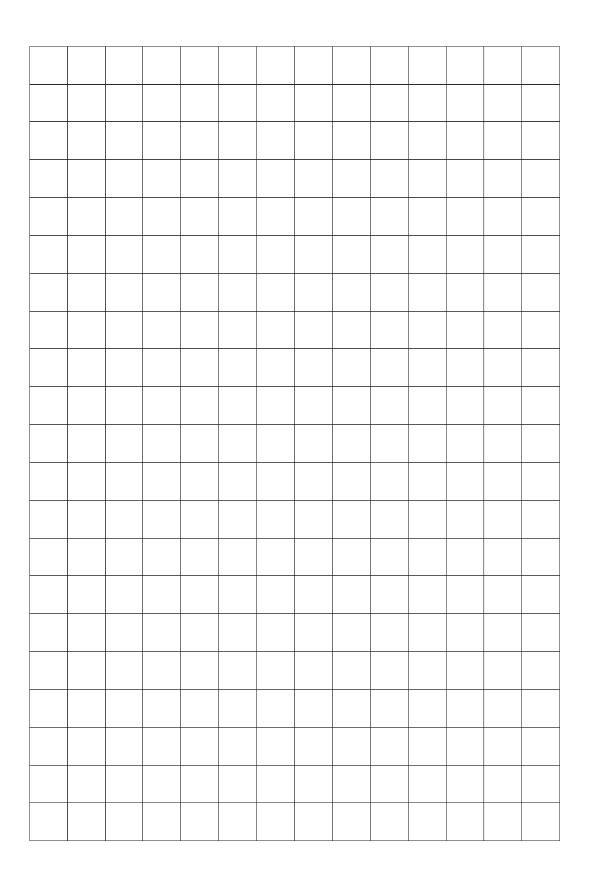



Рис. 5.1. Схема экспериментальной установки: 1 - труба; 2 - дифференциальный манометр; 3 - расходомер; 4 - регулировочная задвижка Расчетные формулы:

Таблица 5.1. Таблица экспериментальных и вычисленных результатов

Параметры		эбо- я	ОПЫТЫ				
		Условные обо- значения	1	2	3		
1.Материал трубы			сталь				
2.Площадь живого сечения	, M ²	ω					
3.Потери напора, м		h					
4. Расход, м ³ /с		Q					
5.Средняя скорость, м/с		υ					
6.Температура воды, ⁰ С		t					
7.Коэффициент кинематической вязкости, м ² /с		ν					
8. Число Рейнольдса		Re					
9.Толщина ламинарного слоя, м		δ					
10.Коэффициент гидрав-лического трения:	практический	λ_{np}					
The restor of restorer	теоретический	$\lambda_{_{\mathrm{T}}}$					

Вывод:	
Deferre property	Do Sorry Province:
Работу выполнил:	Работу принял:
Voyenowy	DOM DOM IA
Контрольные	вопросы:
1. Что такое шероховатость, относи	тельная шероховатость, относитель-
ная гладкость?	
2. Какие трубы называют гидравличе	ески гладкими, шероховатыми?
3. Что такое ламинарная пленка? Кал	к она влияет на потери напора?
4. Какие параметры влияют на коэфо	фициент трения?
5. Как влияет число Рейнольдса на к	оэффициент трения?
6. Как рассчитать коэффициент гидр	равлического сопротивления?
7. Нарисуйте и укажите на графике	зоны ламинарного движения, гидрав-

лически гладких труб, переходную и квадратичных сопротивлений.

8. Как рассчитать потери напора в трубах?

9. Как определить коэффициент трения опытным путем?

10. Как влияет материал труб на коэффициент трения?

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА МЕСТНЫХ СОПРОТИВЛЕНИЙ

Цель работы:

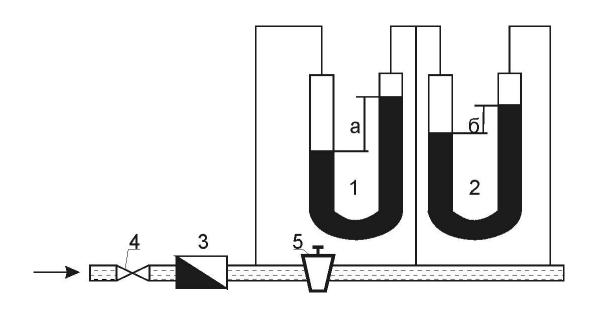


Рис. 6.1. Схема экспериментальной установки: 1, 2 — дифференциальные манометры; 3 — расходомер; 4 — регулировочная задвижка; 5 — пробковый кран; а, б — показания дифманометров

Таблица 6.1 Таблица опытных данных и вычисленных результатов.

ПАРАМЕТРЫ	Условные обо- значения	Опыты				
1. Диаметр трубы, м	d	1	2	3		
1. Диаметр труом, м	u u					
2. Площадь сечения, м ²	ω					
3. Показания 1-го пьезометра, м	h ₁					
4. Показания 2-го пьезометра, м	h ₂					
5. Потери напора в кране, м	hм					
6. Расход воды, м ³ /с	Q					
7. Средняя скорость воды, м/с	υ					
8. Коэффициент сопротивления	ξ					
9. Табличный коэффициент со- противления	ξ табл					

Работу выполнил: Работу принял:

Контрольные вопросы:

- 1. Методика определения коэффициента местного сопротивления.
- 2. В чем заключается принцип наложения потерь?
- 3. Как рассчитываются местные потери напора в длинных трубопроволах?
- 4. Как рассчитываются потери напора в коротких трубопроводах?
- 5. Виды местных сопротивлений.
- 6. В чем заключается физический смысл потерь напора в местных сопротивлениях?
- 7. Как рассчитать потери напора при внезапном расширении потока?
- 8. Как рассчитать потери напора при внезапном сужении потока?
- 9. Изменяется ли коэффициент местного сопротивления в зависимости от режима движения жидкости?
- 10.В чем заключается метод эквивалентной длины при расчете потерь напора в местных сопротивлениях?

ИСПЫТАНИЕ ЦЕНТРОБЕЖНОГО НАСОСА

Цель работы:

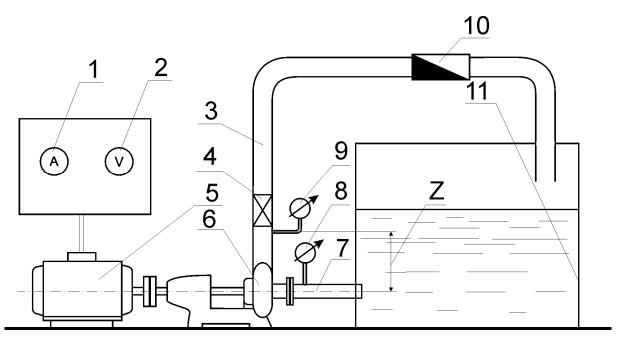
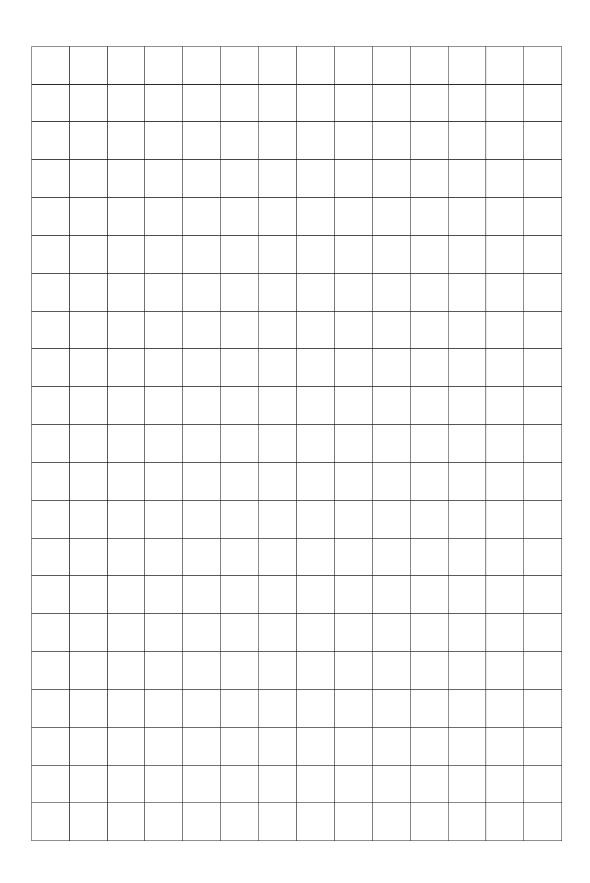



Рис. 7.1. Схема экспериментальной установки для испытания насоса: 1 — амперметр; 2 — вольтметр; 3 — напорный трубопровод; 4 — вентиль; 5 — электродвигатель; 6 — насос; 7 — всасывающий трубопровод; 8 — вакуумметр; 9 — манометр; 10 — счетчик; 11 — циркуляционный бак

Таблица 7.1. Таблица экспериментальных и вычисленных результатов

Показатели		KI	Номер опыта						
		Условные обозначения	1	2	3	4	5	6	
1. Показания манометра,	кг/см ²								
	Па	рм							
2 Показания вакуумметра,	кг/см ²								
	Па	рвак							
3. Полный напор, м		Н							
4. Время замера, с		t							
5. Производительность насоса, м ³ /с		Q							
6. Показания амперметра, А		I							
7. Потребляемая насосом мощность, кВт		N _н							
8. Полезная мощность, кВт		N_{π}							
9. КПД насоса		η							

221200	
Работу выполнил:	Работу принял:
-	-

Контрольные вопросы:

- 1. Как влияет производительность насоса на создаваемый напор, потребляемую мощность, КПД?
- 2. Как влияет число лопаток рабочего колеса на показатели насоса?
- 3. Теоретический напор, создаваемый лопастными машинами.
- 4. Какова максимальная высота всасывания центробежных насосов?
- 5. Кавитация и ее виды. Способы борьбы с ней.

Вывол:

- 6. Как изменится характеристика центробежного насоса при изменении диаметра рабочего колеса?
- 7. Как изменится характеристика центробежного насоса с изменением частоты вращения?
- 8. Уравнение подобия лопастных машин и его смысл.
- 9. Насос в системе не дает необходимого давления. Ваши действия?
- 10. Насос в системе дает избыточное давление. Как его уменьшить?

СОВМЕСТНАЯ РАБОТА НАСОСОВ НА СЕТЬ ПРИ ИХ ПОСЛЕДОВАТЕЛЬНОМ ВКЛЮЧЕНИИ

Цель работы:

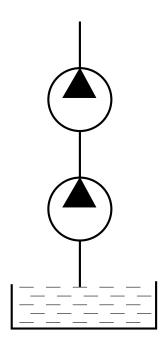
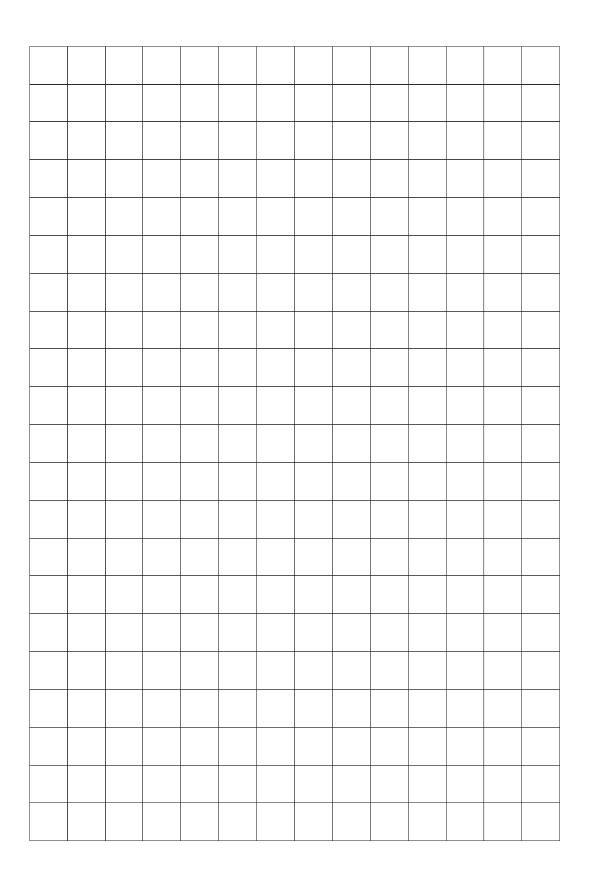



Рис. 8.1. Схема подключения насосов

 Таблица 8.1.

 Таблица экспериментальных и вычисленных результатов

Показатели		-00	Номер опыта							
		Условные обо- значения	1	2	3	4	5	6		
1. Показания манометра,	кг/см ²									
	Па	рм								
2 Показания вакуумметра,	кг/см ²									
	Па	рвак								
3. Полный напор, м		Н								
4. Время замера, с		t								
5. Производительность насосов, м ³ /с		Q								
6. Показания амперметра, А		I								
7. Потребляемая насосами мощ- ность, кВт		N _н								
8. Полезная мощность насосов, кВт		Nπ								
9. КПД насосов		η								

Выводы:	
Работу выполнил:	Работу принял:

Контрольные вопросы:

- 1. Как построить совместную характеристику двух (трех) насосов, работающих на сеть при их последовательном соединении?
- 2. В каких случаях применяется последовательное соединение насосов?
- 3. Как определить рабочую точку насосов, работающих последовательно на сеть?
- 4. Как подобрать насосы в сеть при заданном расходе и напоре?
- 5. Как рассчитывается характеристика системы?
- 6. Какие параметры влияют на создаваемый насосом напор?
- 7. Нарисуйте схему насосной установки с последовательным включением насосов.
- 8. Перечислите основные агрегаты насосной установки и объясните их назначение.
- 9. Маркировка центробежных насосов.
- 10. Как подсчитать потребляемую насосом (насосами) мощность?

ЛАБОРАТОРНАЯ РАБОТА № 9

СОВМЕСТНАЯ РАБОТА НАСОСОВ НА СЕТЬ ПРИ ИХ ПАРАЛЛЕЛЬНОМ ВКЛЮЧЕНИИ

Цель работы:

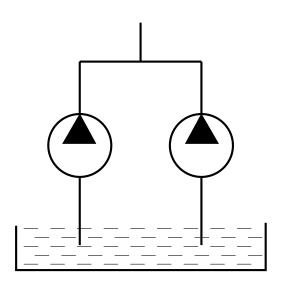


Рис. 9.1. Схема подключения насосов

Расчетные формулы:

 Таблица 9.1.

 Таблица экспериментальных и вычисленных результатов

Показатели		50-	Номер опыта						
		Условные обо- значения	1	2	3	4	5	6	
1. Показания манометра,	кг/см2								
	Па	рм							
2. Показания вакуумметра,	кг/см2								
	Па	рвак							
3. Полный напор, м		Н							
4. Время замера, с		t							
5. Производительность насо	сов, M^3/c	Q							
6. Показания амперметра, А		I							
7. Потребляемая насосами м ность, кВт	ющ-	$N_{\scriptscriptstyle H}$							
8. Полезная мощность насос	сов, кВт	N_{π}							
9. КПД насосов		η							

Вывод:	
Работу выполнил:	Работу принял:

Контрольные вопросы:

- 1. Как построить совместную характеристику двух (трех) насосов, работающих на сеть при их параллельном включении?
- 2. В каких случаях применяется параллельное включение насосов?
- 3. Как определить рабочую точку насосов, работающих параллельно на сеть?
- 4. Какие мероприятия необходимо соблюдать при параллельном включении насосов на сеть?
- 5. Из чего складывается необходимый напор для насоса при его выборе для системы?
- 6. Допустимая высота всасывания центробежных насосов. Какова ее максимальная величина?
- 7. Каково назначение обратного клапана в насосной установке?
- 8. КПД центробежных насосов.
- 9. Потребляемая мощность насосом. Как ее определить?
- 10. Типы центробежных насосов и их конструктивные особенности.

ЛАБОРАТОРНАЯ РАБОТА № 10

ИСПЫТАНИЕ ШЕСТЕРЕННЫХ НАСОСОВ ПО ДАВЛЕНИЮ

Цель работы:

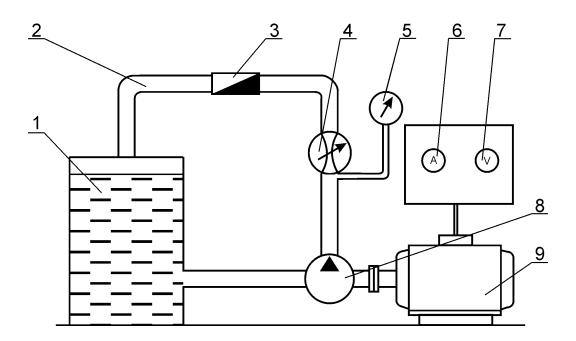
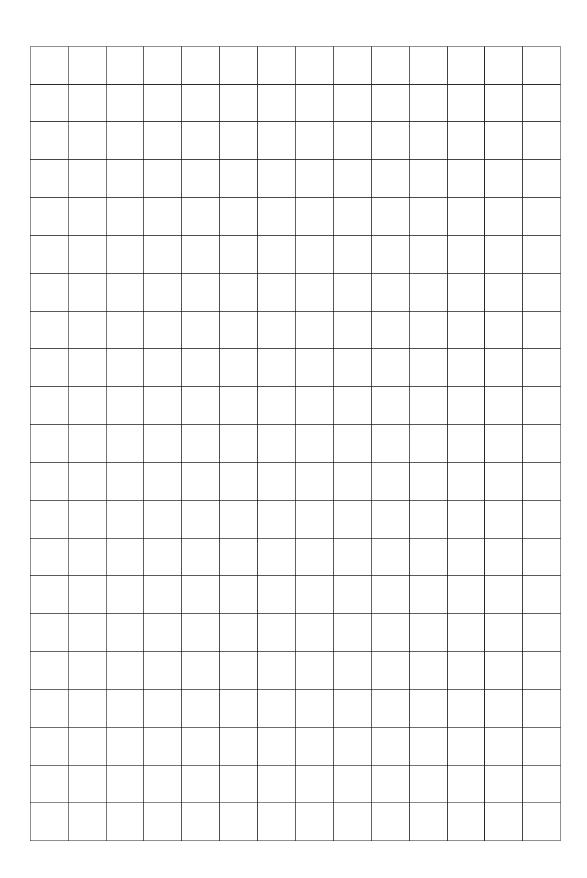



Рис. 10.1. Схема опытной установки: 1 — бак с жидкостью, 2 — напорный трубопровод, 3 — счетчик, 4 — дроссель регулируемый, 5 — манометр, 6 — амперметр, 7 — вольтметр, 8 — насос, 9 — электродвигатель

Расчетные формулы:

Таблица 10.1. Таблица экспериментальных и вычисленных результатов

	-6			Зам	еры		
Показатели	Условные обо- значения	1	2	3	4	5	6
1. Показания манометра, кг/см ²	рм						
2. Сила тока, А	I						
3. Замеряемый объем, л	V						
4. Время замера, с	t						
5. Производительность насоса, л/с	Q						
6. Частота вращения ротора, мин-1	n						
7. Теоретическая производительность, л/с	$Q_{\scriptscriptstyle T}$						
8. Объемный КПД насоса	ηοδ						
9. Потребляемая мощность насоса, кВт	N _H						
10. Полезная мощность насоса, кВт	Nπ						
11. Полный КПД насоса	$\eta_{\scriptscriptstyle H}$						

Вывод:	
Работу выполнил:	Работу принял:
Контрольны	е вопросы:
1. Типы гидравлических передач, их	преимущества и недостатки.
2. Типы насосов и гидромоторов дл	я гидравлических передач, их клас-
сификация.	
3. Преимущества и недостатки шесте	ренных гидромашин.
4. Как определяется теоретическая	производительность шестеренного
насоса?	
5. Как определяется объемный КПД	насоса? От каких параметров зави-
сит КПД?	

- 6. Как определить мощность, потребляемую насосом?
- 7. Как определяется полный КПД насоса?
- 8. Зависимость производительности шестеренного насоса от создаваемого им давления.
- 9. Зависимость КПД насоса от его производительности.
- 10.Зависимость потребляемой насосом мощности от его производительности.

Литература

- 1. Гидравлика, водоснабжение и канализация [Текст] : учебник для вузов / Калицун В.И. [и др.]. 3-е изд., перераб. и доп. М : Интеграл, 2013. 359 с. : ил.
- 2. Гидравлика, гидромашины и гидропневмопривод [Текст]: учеб. пособие для вузов / Стесин С.П., ред. 4-е изд., стер. М: Академия, 2008.
 336 с. (Высшее профессиональное образование. Транспорт). ISBN 978-5-7695-5127-7
- 3. Угинчус А.А. Гидравлика и гидравлические машины: [Текст], 5-е изд., стер. – М : ТИД «Аз-book», 2009. – 396 с.: ил.
- 4. Чугаев Р.Р. Гидравлика (Техническая механика жидкости).- 5-е изд., реприн. М : Бастет, 2008. 672 с
- 5. Штеренлихт Д.В. Гидравлика [Текст] : учебник для вузов / Д. В. Штеренлихт. 3-е изд., перераб. и доп. М : КолосС, 2007. 656 с.: ил. (Учебники и учебные пособия для студентов вузов). ISBN 5-9532-0142-7

Приложения

Приложение 1

Плотность воды при разных температурах

Темпе-	Плот-	Темпе-	Плот-	Темпе-	Плот-	Темпе-	Плот-
ратура	ность	ратура	ность	ратура	ность	ратура	ность
t, °C	ρ, $κΓ/M3$	t, °C	ρ, $κΓ/M3$	t, °C	ρ, $κΓ/M3$	t, °C	$ρ$, $κΓ/m^3$
0	998,87	51	987,62	67	979,5	83	969,94
4	1000	52	987,15	68	978,94	84	969,3
10	999,87	53	986,69	69	978,38	85	968,65
20	998,23	54	986,21	70	977,81	86	968
30	995,67	55	985,73	71	977,23	87	967,24
40	992,24	56	985,25	72	976,66	88	966,68
41	991,86	57	984,75	73	976,07	89	966,01
42	991,47	58	984,25	74	975,48	90	965,34
43	991,07	59	983,75	75	974,89	91	964,67
44	990,66	60	983,24	76	974,29	92	963,99
45	990,25	61	982,72	77	973,68	93	963,3
46	989,82	62	982,2	78	973,07	94	962,61
47	989,4	63	981,67	79	972,45	95	961,92
48	988,96	64	981,13	80	971,83	96	961,22
49	988,52	65	980,59	81	971,23	97	960,51
50	988,07	66	980,05	82	970,57	98	959,81

Приложение 2 Динамическая вязкость воды при разных температурах

Температура, <i>t</i> , °C	μ, Па·с	Температура, <i>t</i> , °C	μ, Па∙с	Температура, <i>t</i> , °C	μ, Па∙с
0	0,00179	20	0,00101	40	0,000654
1	0,00173	21	0,00098	41	0,000642
2	0,00167	22	0,00096	42	0,00063
3	0,00162	23	0,00094	43	0,000618
4	0,00157	24	0,00092	44	0,000608
5	0,00152	25	0,00089	45	0,000597
6	0,00147	26	0,00087	46	0,000587
7	0,00143	27	0,00086	47	0,000577
8	0,00139	28	0,00084	48	0,000568
9	0,00135	29	0,00082	49	0,000558
10	0,00131	30	0,0008	50	0,000549
11	0,00127	31	0,000783	51	0,000541
12	0,00124	32	0,000767	52	0,000532
13	0,0012	33	0,000751	53	0,000524
14	0,00117	34	0,000726	54	0,000515
15	0,00114	35	0,000721	55	0,000507
16	0,00112	36	0,000706	56	0,000499
17	0,00109	37	0,000693	57	0,000492
18	0,00106	38	0,000679	58	0,000484
19	0,00103	39	0,000666	59	0,000477

Приложение 3 Кинематическая вязкость некоторых жидкостей (при температуре 20 °C)

Жидкость	$v \cdot 10^{-6}$, m^2/c
Анилин	4,3
Бензин (при температуре 15 °C)	0,83-0,93
Вода пресная	1,01
Глицерин безводный	4,1
Дизельное топливо	5
Керосин (при температуре 15 °C)	2-3
Красочные растворы (готовые к употреблению)	90-120
Масло касторовое льняное минеральное	1002 55 313-1450
Нефть (при температуре 15 °C)	8,1-9,3
Ртуть	0,11
Спирт этиловый безводный	1,51
Хлористый натрий (26% раствор)	1,53

Приложение 4 Техническая характеристика рабочих жидкостей

	Плот-	Вязкость, v·10 ⁻⁶ , м ² /с		Температу- ра, <i>t</i> °C		1 2		1 2		Темпера-	
Марка масла	ность при +20 °C, кг/м ³	при 50°C	при 0 °C	за- сты- ва- ния	всп ыш- ки	турные пределы примене- ния, <i>t</i> °C	Условия применения				
M-8-B ₂	886	52	2500	-25	200	-20+50	При отрицательных температурах в тракторных гидросистемах				
M-10-B ₂	890	82	7000	-15	190	-10+90	При положительных температурах в тракторных гидросистемах				
MΓ-46-B (MΓ-30)	890	30	760	-35	190	-10+60	При положительных температурах на открытом воздухе				
MΓ-15-B(c) (BMΓ3)	860	10	66	-60	135	-40+35	При отрицательных и положительных температурах в ответственных гидросистемах				

Приложение 5 Значения коэффициентов местных сопротивлений

Вид сопротивления	Коэффициент ζ
Вход из резервуара в трубу при нескругленных кромках	0,5
Выход из трубы в резервуар	1,0
Выход из трубы в атмосферу	0
Вход в трубу с сеткой	6
То же с сеткой и обратным клапаном	10
Вентиль $D = 1350$ мм, полностью открытый	63
Задвижка полностью открытая	0,15
Резкий поворот трубы на 90°	1,20
Плавный поворот трубы на 90°	0,15
Обратный клапан $D = 40700$ мм	1,32,9
Вентили проходные $D = 40400$ мм	48
Внезапное расширение потока	1
Компенсатор гнутый	1,72,0

Приложение 6

Абсолютная шероховатость труб

Трубы	Δ, мм
Стальные цельнотянутые (новые)	0,020,05
Те же (бывшие в эксплуатации)	0,150,3
Стальные сварные (новые)	0,040,1
Чугунные (новые)	0,251
Чугунные и стальные (бывшие в эксплуатации)	0,80,15
Асбестоцементные (новые)	0,050,1
Те же (бывшие в эксплуатации)	0,6
Бетонные и железобетонные	0,30,8