КРАТКАЯ ИНФОРМАЦИЯ ОБ ИЗОБРАЖЕНИИ ДЕТАЛЕЙ С РЕЗЬБОЙ

1 Классификация и основные параметры резьбы

Резьба — поверхность, образованная при винтовом движении плоского контура, лежащего в одной плоскости с осью резьбы по цилиндрической или конической поверхности. Резьба получается путем нарезания на поверхности детали винтовых канавок режущим инструментом (резцами, метчиками, плашками и др.).

Резьбы классифицируют по нескольким признакам:

- в зависимости *от профиля* различают резьбы треугольного, трапецеидального, круглого, прямоугольного и других профилей;
- в зависимости *от поверхности*, на которой нарезана резьба, резьбы разделяются на цилиндрические и конические;
 - по *расположению на поверхности* резьбы бывают наружные и внутренние;
- по эксплуатационному назначению резьбы подразделяют на крепежные (метрические), крепежно-уплотнительные (трубная, коническая), ходовые (трапецеидальная, упорная), специальные и др.;
- в зависимости *от направления винтовой поверхности* резьбы бывают правые и левые;
- по *числу заходов* резьбы подразделяются на однозаходные и многозаходные (двухзаходные, трехзаходные и т.д.).

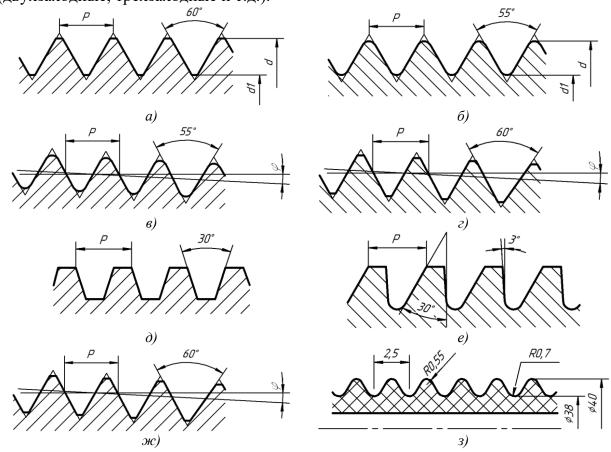


Рис. 1. Профили стандартных резьб:

a — метрическая; b — трубная цилиндрическая; b — трубная коническая;

 ε — коническая дюймовая; δ — трапецеидальная; e — упорная;

ж — коническая метрическая; з — круглая электротехнической арматуры

Основные термины и определения для цилиндрических и конических резьб общего назначения установлены ГОСТ 11708—82.

К *стандартным* резьбам общего назначения относятся метрическая, трубная цилиндрическая, трубная коническая, дюймовая коническая, трапецеидальная, упорная, метрическая коническая и круглая электротехнической арматуры (рис. 1).

Цилиндрическая резьба — резьба, образованная на боковой поверхности прямого кругового цилиндра.

Коническая резьба — резьба, образованная на боковой поверхности прямого кругового конуса.

Основные элементы и параметры резьбы (рис. 1).

Ось резьбы — прямая, относительно которой происходит винтовое движение плоского контура, образующего резьбу.

Профиль резьбы — профиль выступа и канавки резьбы в плоскости осевого сечения резьбы.

Боковые стороны профиля — прямолинейные участки профиля, принадлежащие винтовым поверхностям.

Угол профиля (a) — угол между боковыми сторонами профиля.

Шаг резьбы (*P*) — расстояние между соседними одноименными боковыми сторонами профиля в направлении, параллельном оси резьбы.

Сбег резьбы — участок неполного профиля в зоне перехода резьбы к гладкой части детали (рис.2).

Длина резьбы — длина участка поверхности, на котором образована резьба, включая сбег резьбы и фаску.

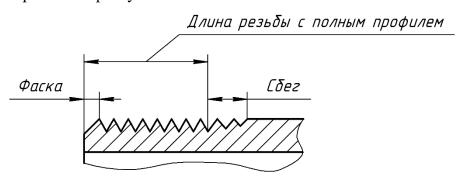


Рис. 2. Резьба, фаска, сбег резьбы

В начале резьбы, как правило, делают коническую *фаску*, предохраняющую крайние витки от повреждений и служащую направляющей при соединении деталей с резьбой. Фаску выполняют до нарезания резьбы. Размеры фасок, сбегов, недорезов и проточек стандартизированы в ГОСТ 10549-80 и 27148-86.

2. Изображение резьбы

Согласно ГОСТ 2.311—68, резьбу на чертежах изображают *условно*, независимо от профиля резьбы:

на стержне — сплошными толстыми линиями по наружному диаметру резьбы и сплошными тонкими по внутреннему диаметру (рис.3, а). На изображениях, полученных проецированием на плоскость, перпендикулярную оси стержня, по внутреннему диаметру резьбы проводят дугу сплошной тонкой линией, приблизительно равную 3/4 окружности.

в отверстии — сплошными толстыми линиями по внутреннему диаметру резьбы и сплошными тонкими линиями по наружному диаметру (рис. $3, \delta$).

a — на стержне; δ — в отверстии

При изображении резьбы расстояние между сплошной толстой и сплошной тонкой линиями должно быть не менее 0,8 мм и не более шага резьбы.

Фаски на стержне с резьбой и в отверстии с резьбой, не имеющие специального конструктивного назначения, в проекциях на плоскость, перпендикулярную оси стержня или отверстия, не изображают.

Границу резьбы на стержне и в отверстии проводят сплошной толстой линией (или штриховой, если резьба изображена как невидимая), доводя ее до линии наружного диаметра резьбы.

При необходимости сбег резьбы изображают тонкими линиями, проводимыми примерно под углом 30° к оси (рис. 4).

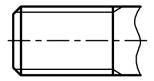


Рис.4. Изображение резьбы со сбегом

Резьбу, показываемую как невидимую, изображают штриховыми линиями одной толщины по наружному и внутреннему диаметрам.

Обычно на чертежах указывают только длину резьбы с полным профилем. При необходимости указывают длину резьбы со сбегом.

На рисунке 5 обозначены размеры элементов с резьбой. Буква M применяется в обозначении резьбы метрической.

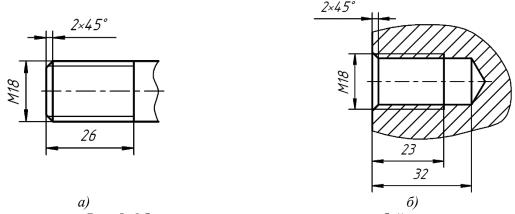


Рис. 5. Обозначение размеров элементов с резьбой: a — на стержне; δ — в отверстии

Если требуется изготовить резьбу полного профиля без сбега, то для свободного выхода резьбообразующего инструмента делают *проточку* (рис. 6). Диаметр наружной проточки должен быть немного меньше внутреннего диаметра резьбы, а диаметр внутренней проточки — немного больше наружного диаметра резьбы. Ширину проточки включают в длину резьбы.

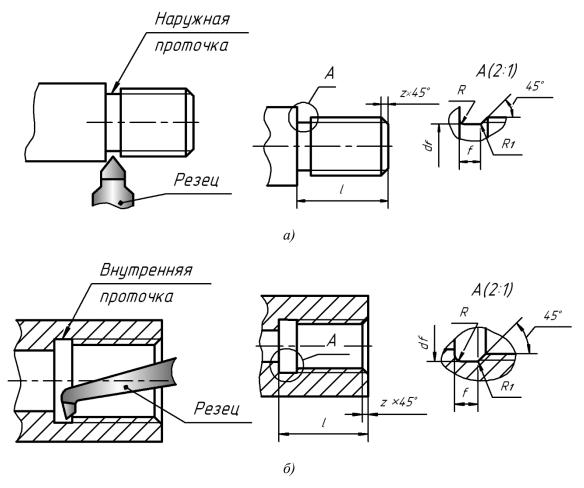


Рис. 6. Изображение резьбы с проточкой: a — на стержне; δ — в отверстии

На сборочных чертежах фаски, сбеги, проточки обычно не изображают. На рисунке 7 показано резьбовое соединение деталей.

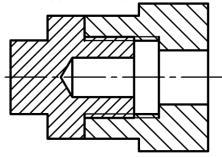


Рис. 7. Изображение резьбового соединения деталей

3. Обозначение стандартных резьб

В общем случае в обозначение резьбы входит:

– буквенный знак резьбы;

- номинальный размер в миллиметрах или дюймах;
- размер шага, если он мелкий, в миллиметрах;
- для многозаходных резьб значение хода с указанием шага в скобках;
- буквы LH для левой резьбы;
- буквенно-цифровое обозначение поля допуска или буквенное обозначение класса точности;

Буквенное обозначение резьбы: M — метрическая цилиндрическая; Tr — трапецеидальная; S — упорная; G — трубная цилиндрическая; Rc — трубная коническая внутренняя; R — трубная коническая наружная; R — дюймовая коническая; R — метрическая коническая; R — круглая для сантехнической арматуры; R — круглая для электротехнической арматуры; R — круглая.

Примеры обозначений метрической резьбы:

- наружная резьба: M20-6g; M20LH-6g; $M20\times1,5$ -6g; $M20\times1,5LH$ -6g; где 20 наружный диаметр резьбы, 1,5 мелкий шаг резьбы, LH резьба левая, 6g поле допуска для наружной резьбы;
 - внутренняя резьба: M20-6H; M20LH-6H; $M20\times1,5$ -6H; $M20\times1,5LH$ -6H, где 6H поле допуска для внутренней резьбы.

Обозначения всех резьб, кроме конических и трубной цилиндрической, относят к наружному диаметру (рис. 8).

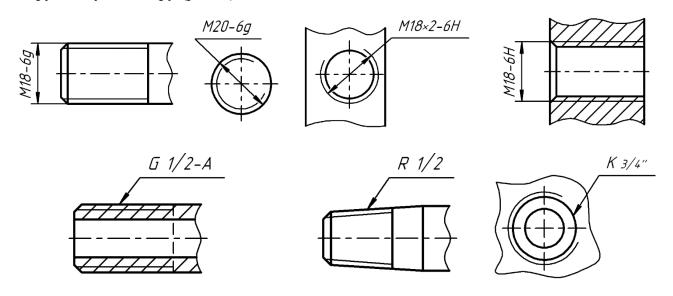


Рис. 8. Примеры обозначения стандартных резьб на разных изображениях

4. Стандартные крепежные детали

Крепежные детали общего назначения — болты, винты, шпильки, гайки изготовляют из углеродистых, легированных, коррозионностойких и других сталей и из цветных сплавов. Технические требования изложены в ГОСТ 1759—70.

В условном обозначении не указывают: исполнение 1, крупный шаг резьбы, правую резьбу, отсутствие покрытия, класс точности В, если на крепежное изделие предусматривается два класса точности (А и В).

Примеры условных обозначений:

1). Болт с шестигранной головкой нормальной точности по ГОСТ 7798—70, третьего исполнения, с метрической резьбой номинального диаметра 12 мм с мелким шагом равным 1,25 мм и полем допуска 6g. Длина болта 60 мм, класс прочности 10.9, марка стали 40X, покрытие — цинковое хроматированное, толщиной 6 мкм:

Болт 3M12×1,25 – 6g× 60.109.40X.016 ГОСТ 7798-70

2). Болт с шестигранной головкой нормальной точности по ГОСТ 7798—70, первого исполнения, с метрической резьбой номинального диаметра 12 мм с крупным шагом и полем допуска 6g. Длина болта 60 мм, класс прочности 5.8, без покрытия:

Болт M12 – 6g× 60.58 ГОСТ 7798-70

4.1. Болты

Болты представляют собой цилиндрический стержень с головкой на одном конце и резьбой на другом. Болты выпускаются нормальной (класс В), повышенной (класс А) и грубой (класс С) точности, с шестигранными, квадратными и другими головками. Наиболее распространены болты с шестигранной головкой нормальной точности (рис. 9), размеры и исполнения которых определяет ГОСТ 7798—70.

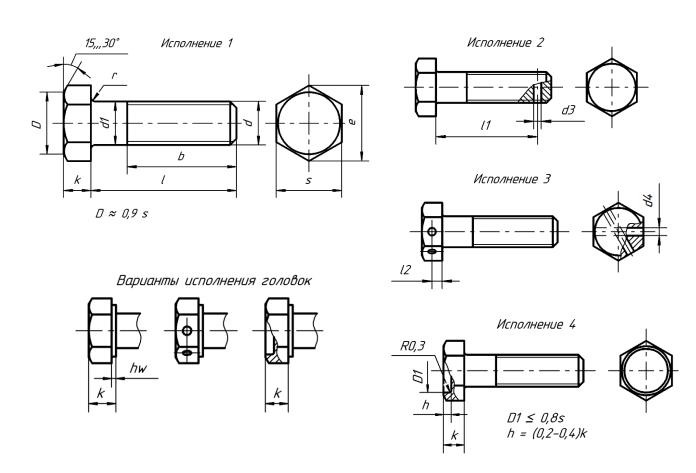


Рис. 9. Болты с шестигранной головкой класса точности В по ГОСТ 7798—70

Пример условного обозначения:

Болт исполнения 1, с диаметром резьбы 20 мм, с крупным шагом резьбы, с полем допуска резьбы 6g, длиной 90 мм, класса прочности 5.8, без покрытия:

4.2. Винты

Крепежные винты общего назначения (рис. 10) с диаметром d=1...20 мм и длиной l=2...120 мм имеют форму головки цилиндрическую ГОСТ 1491—80, потайную ГОСТ 17475—80, полукруглую ГОСТ 17473—80, полупотайную ГОСТ 17474—80, цилиндрическую с шестигранным углублением ГОСТ 11738—78, цилиндрическую скругленную ГОСТ 11644—80. Винты исполнения 1 имеют прямой шлиц, исполнения 2 — крестообразный.

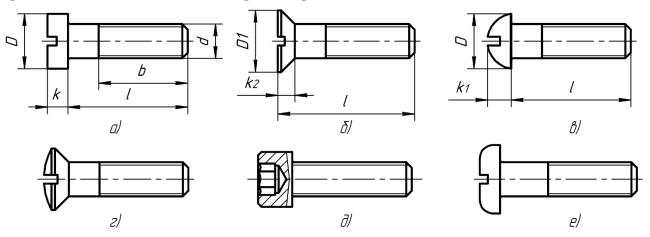


Рис. 10. Винты крепежные общего назначения:

с цилиндрической головкой (a), с потайной головкой (δ), с полукруглой головкой (e), с полупотайной головкой (e), с цилиндрической головкой с шестигранным углублением (d), с цилиндрической скругленной головкой (e)

Пример условного обозначения:

Винт с цилиндрической головкой, исполнения 1, диаметром резьбы 20 мм, длиной 60 мм, с мелким шагом резьбы 1,5 мм, с полем допуска 6g, класса прочности 5.8, без покрытия:

Винт M20×1,5 – 6g × 60.58 ГОСТ 1491-72

4.3. Гайки

Гайка — резьбовое изделие, имеющее отверстие с резьбой для навинчивания на болт или шпильку. По форме поверхности различают гайки шестигранные, круглые, гайки-барашки, колпачковые. По конструкции гайки делятся на обыкновенные, прорезные и корончатые. Гайки по исполнению могут быть трех видов: исполнения 1 — с двумя наружными коническими фасками, исполнения 2 — с одной наружной конической фаской и исполнения 3 — с цилиндрическим или коническим выступом на одном торце гайки и без наружных фасок.

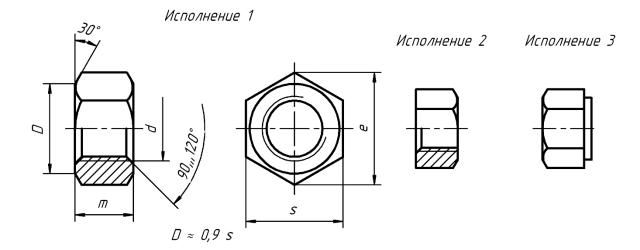


Рис. 11. Гайки шестигранные класса точности В по ГОСТ 5915—70

Пример условного обозначения:

Гайка исполнения 1, диаметром резьбы 16 мм, с крупным шагом резьбы, с полем допуска 6H, класса прочности 5, без покрытия:

Гайка M16 – 6H.5 ГОСТ 5915 -70

4.4. Шайбы

Шайба — деталь, которую устанавливают под гайку или головку болта для предохранения материала детали от задиров и смятия при затяжке гайки, а также, чтобы исключить возможность самоотвинчивания крепежной детали.

Шайбы разделяются на круглые, косые, пружинные, стопорные и др.

Примеры условных обозначений:

1). Шайба по ГОСТ 11371—78 исполнения 1 для крепежной детали с диаметром резьбы 12 мм, группа материала 03, из стали марки 15, с цинковым хроматированным покрытием, толщиной 9 мкм:

Шайба 12.03.019 ГОСТ 11371-78

2). То же, исполнения 2, без покрытия:

Шайба 2.12.03 ГОСТ 11371-78

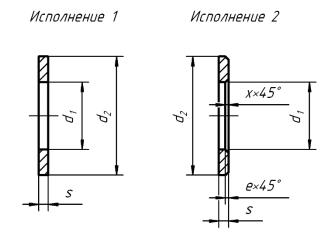


Рис. 12. Шайбы круглые по ГОСТ 11371—78

4.5. Шпильки

Шпилькой называется крепежная деталь, представляющая собой цилиндрический стержень, оба конца которого имеют резьбу.

Шпильки общего применения предназначены для соединения деталей, как с резьбовыми, так и с гладкими отверстиями.

Шаг резьбы крупный, а для диаметров свыше 8 мм — крупный или мелкий.

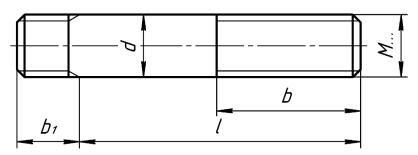


Рис. 13. Шпилька по ГОСТ 22032-76...22040—76

Пример условного обозначения:

Шпилька диаметром резьбы 20 мм, с крупным шагом резьбы, с полем допуска 6g, длиной 90 мм, класса прочности 5.8, без покрытия:

Шпилька M20 – 6g × 90.58 ГОСТ 22032-76

5. Виды соединений деталей и изображение их на чертежах

Соединения бывают разъемные и неразъемные.

Разъемными называют соединения, повторная сборка и разборка которых возможна без повреждения их составных частей.

К разъемным соединениям относят резьбовые, шпоночные, шлицевые (зубчатые), а также соединения, выполняемые с применением штифтов и клиньев.

Неразъемными называют соединения, разборка которых невозможна без нарушения деталей изделия.

К неразъемным относят клепанные и сварные соединения, а также соединения, образованные развальцовкой, пайкой, склеиванием, посадкой с натягом и другие.

Резьбовое соединение состоит из детали имеющей наружную резьбу и детали с внутренней резьбой.

Детали машин и приборов соединяют с помощью крепежных деталей: болтов, винтов, шпилек, гаек, шайб и др. Такие соединения так же относятся к резьбовым.

5.1 Болтовое соединение

Болтовое соединение состоит из болта, гайки, шайбы и скрепляемых деталей. На рис. 9.1, *а* показано конструктивное изображение болтового соединения, которое выполняется *по действительным размерам*. Болты, винты, шпильки, гайки, шайбы на сборочных чертежах при продольном разрезе изображают как на виде (рис. 14).

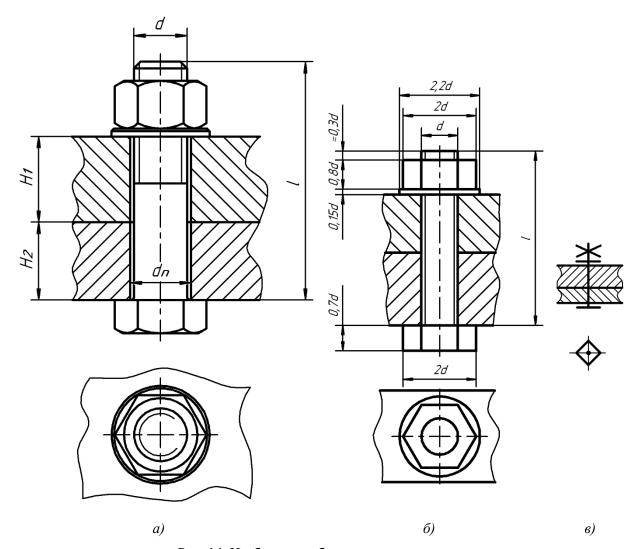


Рис. 14. Изображения болтового соединения:

a — по действительным размерам; δ — упрощенное изображение; ϵ — условное изображение

На сборочных чертежах и чертежах общего вида изображение крепежных деталей выполняют упрощенное или условное по ГОСТ 2.315-68, в зависимости от назначения и масштаба чертежа. Крепежные детали, у которых на чертеже диаметры стержней равны 2 мм и менее, изображают условно.

5.2. Шпилечное соединение

Шпилечное соединение состоит из шпильки, гайки, шайбы и скрепляемых деталей (рис. 15).

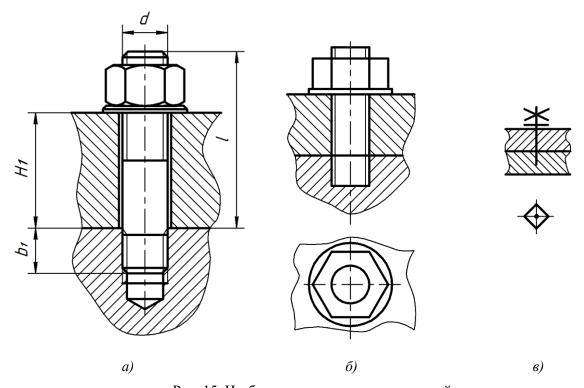
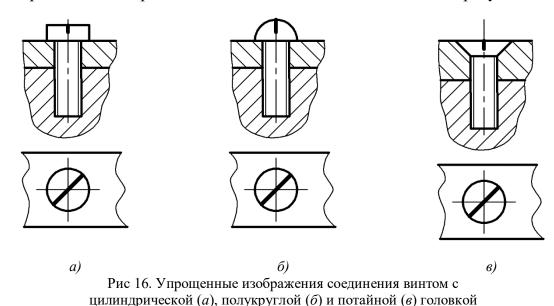



Рис. 15. Изображения соединения шпилькой: a — по действительным размерам; δ — упрощенное изображение; ϵ — условное изображение

5.3. Винтовое соединение

В винтовом соединении, как и в шпилечном, резьбовая часть винта ввинчивается в резьбовое отверстие детали. В прикрепляемой детали имеется гладкое отверстие.

Упрощенные изображения винтовых соединений показаны на рисунке 16.

5.4. Шпоночное соединение

Шпонкой называется деталь, устанавливаемая в пазах соединяемых деталей для предотвращения смещения при передаче крутящего момента.

Стандартами предусмотрено использование призматических (ГОСТ 23360—78), сегментных (ГОСТ 24071—97) и клиновых (ГОСТ 24068—80) шпонок. Примеры изображения соединения шпонкой приведены на рисунке 17.

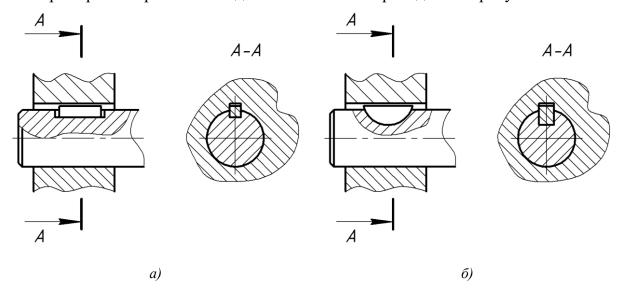


Рис. 17. Изображения соединений с призматической (a) и сегментной (b) шпонкой

5.5. Шлицевое соединение

Пример шлицевого (зубчатого) изображения показан на рисунке 18.

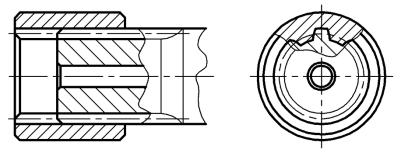


Рис. 18. Изображение шлицевого соединения

5.6. Штифтовое соединение

Для соединений деталей применяют цилиндрические (ГОСТ 3178—70) и конические (ГОСТ 3129—70) штифты.

Пример изображения соединения штифтом показан на рисунке 19.

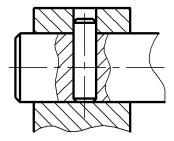


Рис. 19. Изображение штифтового соединения

5.7. Сварные соединения

Сварка является основным способом получения неразъемных соединений в машиностроении.

Условные изображения и обозначения на чертежах швов сварных соединений устанавливает ГОСТ 2.312-72.

Сварной шов независимо от способа сварки изображают на чертеже соединения видимый — сплошной основной линией (рис. 20, a), невидимый — штриховой линией (рис. 20, δ). От изображения шва или одиночной точки проводят линиювыноску, заканчивающуюся односторонней стрелкой.

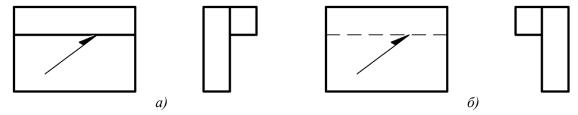


Рис. 20. Условные изображения швов сварных соединений: a — видимый шов; δ — невидимый шов

При точечной сварке видимую одиночную сварную точку изображают знаком + (рис. 21), который выполняют сплошными линиями. Невидимые одиночные точки не изображают.

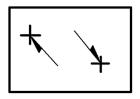


Рис. 21. Изображение одиночных сварных точек

На чертежах сварного соединения приводят условное обозначение шва, которое наносят над или под полкой линии-выноски, проводимой от изображения шва.

Условное обозначение лицевого шва наносят над полкой линии-выноски.

Условное обозначение шва с оборотной стороны наносят под полкой линиивыноски.

Примеры условных обозначений сварных швов:

1). Шов таврового соединения без скоса кромок, двусторонний, прерывистый с шахматным расположением, выполняемый электродуговой ручной сваркой в защитных газах неплавящимся электродом (*Рн3*) по замкнутой линии. Катет шва 4 мм, длина провариваемого участка 10 мм, шаг 20 мм:

2). Шов точечный соединения внахлестку, выполняемый дуговой сваркой в инертном газе плавящимся электродом. Расчетный диаметр точки 9 мм, шаг 60 мм, расположение точек шахматное. Усиление шва должно быть снято:

$$\Gamma OCT 14776 - 79 - H1 - H\Pi - 9 Z 60$$

3). Шов соединения внахлестку без скоса кромок, односторонний, выполняемый дуговой полуавтоматической сваркой в защитных газах плавящимся электродом. Шов по незамкнутой линии, катет шва 5 мм:

$$\Gamma OCT 14806 - 80 - H1 - \Pi - 3 \triangle 5$$

5.8. Паяные и клеевые соединения

В соединениях, получаемых пайкой и склеиванием, место соединения деталей следует изображать сплошной линией толщиной 2s (рис. 22).

Рис. 22. Изображение паяного и клеевого шва

Для обозначения паяного и клеевого соединений следует применять условные знаки, которые наносят на полке линии-выноски сплошной основной линией (рис. 23)

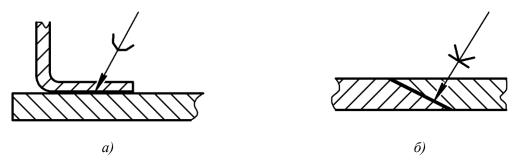


Рис. 23. Знаки, наносимые на линии-выноски при обозначении: a — паяного шва; δ — клеевого шва

Швы, выполняемые по замкнутой линии, обозначают подобно сварному шву со знаком (рис. 24).

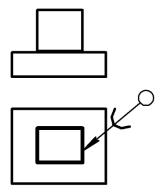


Рис. 24. Обозначение паяного шва по замкнутому контуру