6 ЛЕКЦИЯ

Грузозахватные и чалочные устройства и тара. Передачи в ГПМ. Привод в ГПМ. Остановы.

Грузозахватные и чалочные устройства и тара

Наиболее распространённым грузозахватным органом является *крюк*, по форме различают *однорогие и двурогие*. Стандартизованы, изготавливают коваными и штампованными грузоподъёмностью 0,4...100 т, а также пластинчатыми грузоподъёмностью 40...315 т (проще в изготовлении и более надёжны, но они тяжелее).

Материал кованых крюков сталь 20 и 20Г, термообработка отжиг или нормализация для снятия внутренних напряжений. Крюки обычно имеют короткий или удлинённый стержень (хвостовик) с резьбовым концом для соединения с траверсой (поперечиной) подвески и реже проушину (отверстие для непосредственного соединения с концом каната посредством коуша или с цепью через переходное звено).

Выбор номера крюка производят по приводу (ручной или машинный), режиму работы, грузоподъёмности и схеме подвески (нормальный или удлинённый стержень).

Крюки соединяют с гибким грузовым элементом, чаще всего канатом, обычно с помощью *крюковых подвесок* (крюковая обойма, крюковая обоймица) нормального типа и укороченных, при этом канат взаимодействует с вращающимся на оси одним или несколькими блоками.

В нормальных подвесках траверса с цапфами и центральным отверстием, через которое свободно проходит хвостовик крюка, соединяется с осью канатных блоков продольными грузовыми планками (серьгами, щёками) и может поворачиваться в их проушинах вместе с крюком относительно горизонтальной оси. Хвостовик крюка закрепляется на траверсе гайкой, опирающейся на упорный подшипник качения или на сферическую шайбу, обязательно позитивное стопорение гайки относительно хвостовика (при грузоподъёмности $Q \ge 3$ т – планкой в совместном пазу на торце). Ручьи блоков, для предохранения от выскакивания каната, защищают кожухом из листовой стали, зазор $0,2d_{\rm кан}$. В укороченных подвесках блоки размещают на удлинённых цапфах траверсы.

Материал траверсы сталь 40, 45, размеры определяют из расчёта на изгиб по среднему ослабленному отверстием под крюк сечению с коэффициентом запаса по пределу текучести ≥ 3. Цапфы траверсы рассчитывают на изгиб и срез, а также проверяют по давлению между цапфой и грузовой планкой во избежание задира на поверхности контакта:

$$q = 0.5Q \cdot g/(d_{uandbal} \cdot \delta_{n_{1}a_{1}a_{1}a_{2}a_{1}}) \le [q] = 35 H/MM^{2}$$

Материал грузовой планки обычно сталь Ст3, наибольшее напряжение возникает по горизонтальному диаметральному сечению отверстия (проушина) под цапфу траверсы. Среднее напряжение не должно превышать 70 Н/мм², наибольшее напряжение на внутренних волокнах проверяют по формуле Ляме:

$$\sigma_{\text{MAKC}} = \frac{0.5 \cdot Q \cdot g}{\delta_{\text{MARKM}} \cdot 2r} \cdot \frac{h^2 + r^2}{h^2 - r^2} \le [\sigma] = 100 \text{ H/mm}^2$$

где r – радиус отверстия под цапфу, мм;

h – расстояние от центра отверстия до нижнего края грузовой планки, мм.

Более точно для проушин условие неразрушения (Справочник по кранам: В 2-х т. Т 1. Под ред. М.М. Гохберга. – М.: Машиностроение. 1988. — 536 с.: ил.):

$$\sigma_{\text{\tiny MAKC}} = \frac{K_{\alpha}F}{(B-d) \cdot \delta} \le 0.85 \ \sigma_{\text{\tiny T}}$$

где K_{α} – коэффициент концентрации напряжений, ≈ 4 для угла контакта поверхностей $2\alpha = 0^0...40^0$ и при изменении размеров $\frac{B}{d}$ от 1,5 до 3,5.

С ростом α (при повышении точности) значение K_{α} снижается;

F – усилие вдоль оси планки, H;

B и δ – ширина и толщина планки, мм;

d – диаметр отверстия под цапфу, мм;

 $\sigma_{\rm T}$ – предел текучести материала планки, ${\rm H/mm}^2$.

Расстояние от центра отверстия до торцевого обреза планки $h = (0, 5 \dots 0, 7)B$.

Наряду с грузовыми крюками применяют *грузовые скобы* (петли, серьги) *глухие и шарнирные*. Они имеют меньшие размеры и массу чем крюки, но работа с ними затруднена из-за необходимости при зачаливания груза продевать стропы в отверстие скобы.

Для обвязки груза при подвешивании груза к крюку или скобе и упрощения зацепления применяют различные *строны* на основе канатов, цепей, лент *с чалочными крюками*, *карабинами*, *коромыслами*. Нагрузка на одну ветвь стропа, каждая из которых образует с вертикалью угол α , определяется:

$$S = \frac{1}{\cos \alpha} \cdot \frac{Q \cdot g}{z} = k \cdot \frac{Q \cdot g}{z}$$
, H

где z — число ветвей;

k – множитель, при $\alpha = 0^{\circ}$, 30° , 45° (**не более**) значение k = 1; 1,15; 1,42.

При работе ГПМ со штучными грузами для уменьшения доли ручного труда и сокращения времени на зацепление груза и освобождение от него применяют клещевые захваты, имеющие замкнутую на крюк рычажную систему в виде клещей, свободные концы которых загнуты по очертанию груза или имеют фрикционные колодки. При подъёме захват закрывается и удерживает груз за счёт формы клещей или сил трения между ними и грузом. По фрикционному принципу работают и эксцентриковые захваты для листового материала.

Также нашли применение *траверсы* (поперечины), *платформы*, *поддоны*, *контейнеры*, *сетки*, *люльки*, *бадьи* (ёмкости), *кюбели* (бадья для сыпучих грузов с саморазгрузкой – обычно открывается дно), *ковши*, *грейферы* (имеют подвижные челюсти, при их смыкании захватывается груз и удерживается, размыкаются челюсти в месте разгрузки, управление канатное или гидроцилиндрами), *спредеры* (устройства для перегрузки

контейнеров – подъёмная рама с захватами и механизмом управления), *подъёмные электромагниты*, вакуумные захваты.

«Правила безопасности опасных производственных объектов, на которых используются подъёмные сооружения» (далее ФНП – федеральные нормы и правила, последняя редакция, действуют с 01.01.2021; ПС – подъёмные сооружения), регламентируют ряд положений, в том числе:

- 121. Находящиеся в эксплуатации ПС должны быть снабжены табличками с обозначениями учётного номера, заводского номера ПС, паспортной грузоподъёмности и даты следующего полного и частичного технического освидетельствований.
- 165. ПС в течение срока службы должны подвергаться периодическому техническому освидетельствованию:
 - а) частичному не реже одного раза в 12 месяцев;
 - б) полному не реже одного раза в 3 года (редко используемые 1 раз в 5 лет).

При частичном техническом освидетельствовании статические и динамические испытания ПС не проводятся

Также предусмотрено после выполнения ряда работ внеочередное полное техническое освидетельствование ΠC (166).

- 168. Результатом технического освидетельствования должно подтверждаться следующее:
- а) ПС и его установка на месте эксплуатации соответствуют требованиям эксплуатационной документации и настоящих ФНП;
 - б) ПС находится в состоянии, обеспечивающем его безопасную работу.
 - 169. При полном техническом освидетельствовании ПС должны подвергаться:
 - а) осмотру;
 - б) статическим испытаниям;
 - в) динамическим испытаниям;
- Γ) испытаниям на устойчивость для ΠC , имеющих в паспорте характеристики устойчивости... .
- 171. Статические испытания проводятся с целью проверки конструктивной пригодности ПС и его сборочных единиц.
- 179. Динамические испытания ПС проводятся грузом, масса которого на 10 процентов превышает его паспортную грузоподъёмность, и с целью проверки действия его механизмов и тормозов.
- 215. Требования промышленной безопасности при эксплуатации грузозахватных приспособлений, в том числе к проведению технического обслуживания, ремонта, реконструкции, должны соответствовать требованиям промышленной безопасности при эксплуатации ПС, совместно с которым они используются по назначению.
- 216. Персонал, который назначается для выполнения работ по строповке, в том числе, по навешиванию на крюк ПС, зацепке и обвязке грузов, перемещаемых ПС с применением грузозахватных приспособлений, должен иметь уровень квалификации, соответствующий профессии "стропальщик".
- 217. Безопасное использование грузозахватных приспособлений включает в себя выполнение эксплуатирующей организацией следующих функций:
- г) обеспечение стропальщиков отличительными знаками, испытанными и маркированными съемными грузозахватными приспособлениями, соответствующими массе и характеру перегружаемых грузов;
- е) расчёт стропов из стальных канатов перед эксплуатацией должен выполняться с учётом числа ветвей канатов и угла наклона их к вертикали.

Расчётную нагрузку отдельной ветви многоветвевого стропа должна рассчитываться из условия равномерного натяжения каждой из ветвей и соблюдения (в общем случае) расчётного угла между ветвями, равного 90 градусов.

Для стропа с числом ветвей более трёх, воспринимающих расчётную нагрузку, в расчёте должны учитываться **не более трёх ветвей**.

При расчёте стропов, предназначенных для транспортировки заранее известного груза, в качестве расчётных углов между ветвями стропов принимаются фактические углы.

При замене отдельных ветвей стропов в эксплуатации они должны удовлетворять следующим коэффициентам запаса:

не менее 6 – для изготовленных из стальных канатов;

не менее 4 – для изготовленных из стальных цепей;

не менее 7 – для изготовленных из лент или нитей (круглопрядные стропы) на полимерной основе.

Для ветвей специальных стропов (транспортирующих, пакетирующих), используемых не более чем для 5 перегрузок пакетов длинномерных грузов (металлопроката, труб, пиломатериалов) в одном рабочем цикле от изготовителя до конечного потребителя, после чего утилизируемых, назначаются коэффициенты запаса не менее 5;

- ж) обеспечение выполнения строповки грузов в соответствии со схемами строповки.
- 218. Съёмные грузозахватные приспособления и тара, признанные негодными к использованию в работе, в том числе по причине отсутствия необходимой маркировки, а также грузозахватные приспособления с истёкшим сроком безопасной эксплуатации (службы) не должны находиться в местах производства работ с применением ПС.
- 219. Стропальщики и крановщики (операторы) должны проводить осмотр грузоза-хватных приспособлений перед их применением, при этом следует использовать браковочные показатели, приведённые в их руководстве (инструкции) по эксплуатации.
- 222. После проведения ремонта грузозахватных приспособлений и грузовой тары должна проводиться проверка качества выполненного ремонта с проведением статических испытаний грузозахватного приспособления с нагрузкой, составляющей 125 процентов по отношению к его номинальной паспортной грузоподъёмности, и статических испытаний тары (за исключением грузовых контейнеров) с нагрузкой, составляющей 110 процентов от разности масс брутто и нетто, указанных в характеристиках тары.
- 223. Ветви многоветвевых стропов и траверс, разъёмные звенья, крюки и другие легкозаменяемые (без сварки, заплётки, опрессовки и сшивки) расчётные элементы грузозахватных приспособлений, применённые взамен повреждённых или изношенных, должны иметь необходимую маркировку изготовителя, при этом в паспорте грузозахватного приспособления должна быть сделана отметка о проведённом ремонте.
- 224. В процессе эксплуатации съёмных грузозахватных приспособлений и тары эксплуатирующая организация в лице назначенного инженерно-технического работника (или инженерно-технических работников согласно требованиям подпункта "и" пункта 22 настоящих ФНП) должна периодически производить их осмотр

траверс, клещей, захватов и тары – каждый месяц;

стропов – каждые 10 дней;

съёмных грузозахватных приспособлений, используемых реже, чем один раз в 10 дней – перед началом работ.

Осмотр съёмных грузозахватных приспособлений и тары должен производиться по инструкции, утвержденной внутренним распорядительным актом эксплуатирующей организации (при отсутствии норматива или браковочных показателей изготовителя) и определяющей порядок и методы осмотра, браковочные показатели. Выявленные в процессе осмотра поврежденные съёмные грузозахватные приспособления должны изыматься из работы.

Проверка состояния пакетирующих стропов должна производиться перед каждой операцией подъёма запакетированного груза путем подъёма пакета в соответствии с утверждёнными схемами строповки на высоту 100-200 мм от поверхности, на которой расположен пакет, и выдержки в таком положении не менее 30 секунд.

Если форма и целостность пакета груза в течение времени выдержки не изменились, то строп признается годным к дальнейшему использованию.

225. Результаты осмотра съёмных грузозахватных приспособлений и тары должны заноситься в журнал осмотра грузозахватных приспособлений.

226. ...

Разгрузка тары на весу должна производиться равномерно в течение не менее 10 секунд. Мгновенная разгрузка тары на весу запрещается.

- 227. Установка вибраторов на таре разрешается только при вертикальном расположении оси вращения дисбалансов. Величина возмущающей силы вибратора не должна превышать 4 кН.
- 228. Перемещать мелкоштучные грузы разрешается только в специальной предназначенной для этого таре, чтобы исключить возможность выпадения отдельных частей груза.
- 232. Статические испытания грузозахватного приспособления проводят статической нагрузкой, **превышающей его грузоподъёмность на 25 процентов**, в следующей последовательности:

испытательный груз, зацепленный (охваченный, обвязанный) испытываемым грузозахватным приспособлением или подвешенный к нему, с возможно меньшими ускорениями поднимается на высоту 50-100 мм и выдерживается в таком положении не менее 10 минут;

по истечении указанного времени испытательный груз опускается на площадку.

233. Результаты статических испытаний грузозахватных приспособлений анализируют после снятия с них нагрузки. При наличии остаточной деформации, явившейся следствием испытания грузом, грузозахватное приспособление не должно допускаться к работе.

Испытания прекращаются или приостанавливаются при возникновении аварийной ситуации, угрожающей безопасности лиц, участвующих в испытаниях. Продолжение испытаний допускается только после устранения причин, вызвавших прекращение или приостановку испытаний.

234. Результаты испытания грузозахватных приспособлений, тары статической нагрузкой должны быть оформлены актом (протоколом) испытания. При положительных результатах в нём должно подтверждаться, что грузозахватное приспособление, тара выдержали испытания и соответствуют требованиям действующих паспорта и руководства (инструкции) по эксплуатации ПС и находятся в работоспособном состоянии. При отрицательных результатах в акте отражаются выявленные дефекты и повреждения и вероятные причины их происхождения. В этом случае грузозахватное приспособление, тара должны быть направлены в ремонт или на утилизацию.

Передачи в ГПМ

Нашли применение зубчатые редукторы (реже червячные). В механизмах поворота, при окружной скорости до 0,6 м/с, взамен зубчатых колёс большого диаметра используют цевочные колёса.

Выбор для ГПМ выпускаемых промышленностью редукторов производят по параметрам:

- назначение;
- режим работы;
- вращающий момент на тихоходном валу, Нм;
- передаточное число;
- консольная нагрузка на валах, Н;
- частота вращения быстроходного вала, об/мин или c^{-1} ;
- схема сборки;
- форма выходных концов валов.

Иногда приводят значение передаваемой редуктором мощности при частоте вращения быстроходного вала, режиме работы (ПВ%) и передаточном числе.

Привод в ГПМ

Наибольшее распространение в крановых механизмах получил электропривод, в том числе на основе электродвигателей асинхронных трёхфазного переменного тока с фазным ротором, короткозамкнутых специального кранового исполнения и единой серии, а также электродвигателей постоянного тока.

Для управления применяют контроллеры кулачковые и магнитные, преобразователи напряжения и частоты, что позволяет получить диапазон регулирования скорости ниже и, реже, выше номинальной. Для малых мощностей возможно управление с помощью реверсивного магнитного пускателя.

Расчёт предварительной мощности электродвигателя производят, кВт:

$$P \ge \frac{P_{\rm CT}}{K_{\rm 9\Pi}}$$

где $P_{\text{ст}}$ – расчётная статическая мощность на валу двигателя при подъёме груза, кВт;

 $K_{\text{эп}}$ — учитывает режим работы механизма, вид управляющего устройства и электропривода. Для асинхронного короткозамкнутого электродвигателя с $n_{\text{с}}$ =1000 об/мин (для механизма подъёма при $J_{\Sigma}/_{1,2J_{\text{лв}}}$ < 2 и пере-

движения и поворота при $J_{\Sigma}/_{1,2J_{\text{дв}}} \le 5$) для режимов Л (м1; м2; м3), С

(M4; M5), T (M6; M7), BT (M8; M9) $K_{3\Pi}$ =1,35; 1; 0,65; 0,30;

 J_{Σ} – суммарный момент инерции двигателя и механизма, кгм²;

 $J_{\rm дв}$ — момент инерции ротора двигателя, кгм 2 .

По рассчитанной мощности по каталогу выбирается электродвигатель с обеспечением условия пуска:

$$M_{max} > 1.25 (M_{\text{cT} max} + M_{\text{дин}})$$

где M_{max} – максимальный момент выбранного двигателя, H_{m} ;

 $M_{\rm cr\ \it max}$ – максимальный момент статической нагрузки, Нм;

 $M_{\text{дин}}$ — динамический момент, определяемый из условия заданного ускорения, Нм.

Затем проверяют электродвигатель с учётом параметров разработанного механизма, режима работы и управляющего устройства.

Нашли применение в крановых механизмах объёмный гидропривод и пневмопривод. Они отличаются простотой передачи энергии к механизмам, имеющим сложную пространственную схему. Объёмный гидропривод включает насос и гидродвигатель (гидродвигатели) вращательного или поступательного движения, управляющую, контрольно-регулирующую аппаратуру, гидробак и гидролинии. Обязательна очистка масла.

Пневматический привод не нуждается в возвратных пневмолиниях, а в целом он аналогичен гидроприводу.

Ручной привод применяется при редкой и непродолжительной работе, а также при невозможности использовать другой вид привода.

В самоходной ГПМ в качестве энергоисточника применяют двигатели внутреннего сгорания с раздачей мощности механическими передачами или гидроприводом.

Остановы

Остановы удерживают вал от самопроизвольного вращения в сторону опускания груза, допуская свободное вращение в другую сторону. Применяют:

- храповые наружного, внутреннего и торцового зацепления;
- фрикционные роликовые;
- фрикционные кулачковые.

Храповый останов с наружным зацеплением включает храповое колесо с внешними зубьями специального профиля и подпружиненную собачку, которая упирается в зуб при изменении направления вращения. Для уменьшения удара обратного хода устанавливают несколько собачек, сдвинутых относительно друг друга на долю шага.

Роликовый останов работает как роликовая муфта свободного хода.

Фрикционные кулачковые работают по принципу эксцентрикового захвата, используя самозакливание.

ВНИМАНИЕ

Материал лекции прорабатывается и дополняется по источникам, приведённым в «Детали машин» (программные вопросы по разделу «Подъёмнотранспортирующие машины») для студентов очного обучения. Не исключаются и другие источники, в том числе и ИНТЕРНЕТ, как добавление.

Проработка подтверждается представлением письменных ответов на вопросы 26,32,33,35,43 вышеупомянутых ...**программные вопросы по разделу**...

Ответы рукописные, выполняются на листах формата А4 (по «зебре» с шагом 1 см или листы в клетку) аккуратно и разборчиво, ориентация книжная. Все поля по 20 мм (можно писать с обеих сторон листа) . На левом поле каждого листа вдоль по центру указывается группа, фамилия и дата написания (лист повернуть, чтобы поле оказалось вверху). Обязательно записывается вопрос, затем приводится ответ. Листы нумеруются, соединяются скрепкой и представляются на занятиях и консультации (во время карантина сдаются лаборанту, ауд. 310). Срок сдачи — конец следующей недели после лекции по расписанию.

Ответы следует сопровождать рукописными схемами и рисунками в карандаше, при необходимости можно заимствовать сложные фигуры из ИН-ТЕРНЕТА с рукописным добавлением позиций с наименованиями непосредственно на поле рисунка.

ВАША оценка будет складываться как суммарная, в том числе регулярность работы, полнота и качество ответов, тестирование, выполнение расчётов.... Успеха в учёбе!