МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ФГБОУ ВО КОСТРОМСКАЯ ГСХА

Кафедра электропривода и электротехнологии

СПЕЦИАЛЬНЫЙ ЭЛЕКТРОПРИВОД

Методические рекомендации по выполнению курсовой работы для студентов направления подготовки 35.03.02 «Агроинженерия», профиль «Электрооборудование и электротехнологии» очной и заочной форм обучения

Составители: сотрудники кафедры электропривода и электротехнологии Костромской ГСХА к.т.н., доцент H.A. Фалилеев, к.э.н., доцент A.A. Васильков.

Рецензент: д.т.н., профессор кафедры электроснабжения Костромской ГСХА Н.М. Попов.

Рекомендовано к изданию методической комиссией электрификации и автоматизации сельского хозяйства, протокол N2 7 от 01 сентября 2015 года.

С 71 Специальный электропривод: методические рекомендации по выполнению курсовой работы для студентов направления подготовки 35.03.02 «Агроинженерия», профиль «Электрооборудование и электротехнологии» очной и заочной форм обучения / сост. Н.А. Фалилеев, А.А. Васильков. — Караваево: Костромская ГСХА, 2015. — 27 с.

В издании рассмотрены методики по выбору и расчету электродвигателей для различных режимов работы, последовательность расчета добавочных сопротивлений для электроприводов с релейно-контакторным управлением при пуске, расчет количества включений двигателей общего применения для повторно-кратковременного режима, расчет мощности двигателя для кратковременного режима работы, регулирование скорости при частотном управлении двигателем, а также задания для курсовой работы по вариантам.

Методические рекомендации по выполнению курсовой работы предназначены для студентов направления подготовки 35.03.02«Агроинженерия», профиль «Электрооборудование и электротехнологии» очной и заочной форм обучения.

УДК 621.34 ББК 31.291

Учебно-методическое издание

Специальный электропривод: методические рекомендации по выполнению курсовой работы для студентов направления подготовки 35.03.02 «Агроинженерия», профиль «Электрооборудование и электротехнологии» очной и заочной форм обучения / сост. Н.А. Фалилеев, А.А. Васильков. — Караваево: Костромская ГСХА, 2015. — 27 с.

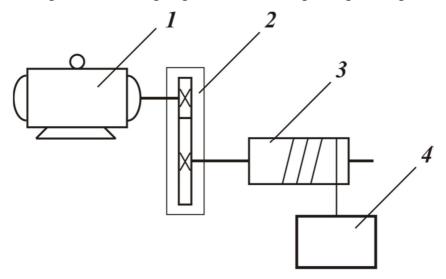
Методические рекомендации издаются в авторской редакции.

ОГЛАВЛЕНИЕ

Введение	4
Задание к курсовой работе	5
Методические указания к разделам курсовой работы	7
Приложение	21

ВВЕДЕНИЕ

Методическое пособие подготовлено в соответствии с Государственным образовательным стандартом и примерной программой дисциплины «Специальный электропривод» и предназначено для студентов направления подготовки 35.03.06 «Агроинженерия» профиль «Электрооборудование и электротехнологии» очной и заочной форм обучения.


Пособие предназначено для закрепления теоретического и практического материала дисциплины студентами очной и заочной форм обучения. Он содержит краткие методические советы по выполнению курсовой работы, основные формулы для расчётов.

Целью данной курсовой работы является закрепление и систематизация знаний по дисциплине электроприводу, развитие навыков самостоятельной работы с использованием специальной технической литературы.

Задания к курсовой работе

Часть 1 Расчет и выбор асинхронного электродвигателя с фазным ротором. Расчет пусковых резисторов. Схемы автоматического управления

1.1 Для подъемного электропривода, выполненного по кинематической схеме, представленной на рисунке 1, в соответствии с индивидуальным заданием выбрать асинхронный электродвигатель с фазным ротором и тип и марку редуктора. Режим работы электропривода – повторно-кратковременный (S3).

1 – электродвигатель; 2 – редуктор;

3 – барабан;4 – груз.

Рисунок 1. Кинематическая схема подъемного механизма

- 1.2 Рассчитать ступени пускового резистора и определить пусковой ток в обмотках статора и ротора электродвигателя.
- 1.3 Определить сопротивления, которые требуется ввести в цепь ротора, чтобы груз двигался на подъем и на спуск со скоростью, равной 0,5 заданного значения. Построить искусственные механические характеристики и определить токи в обмотках статора и ротора при указанных режимах работы.
- 1.4 Разработать схемы автоматического управления пуском реверсивного и нереверсивного электропривода с тремя ступенями скорости.

Часть 2 Расчет и выбор асинхронных электродвигателей при

повторно - кратковременном режиме работы. Определение времени разбега и допустимого числа включений электродвигателя

- 2.1 Для кинематической схемы (см. рисунок 1) выбрать асинхронные электродвигатели из серии 4AC и 4A.
- 2.2 Для двигателя из серии 4A определить допустимое число включений в час. Построить зависимость $\omega = f(t)$ и $M_{\partial s} = \varphi(t)$ в процессе пуска. Определить время разбега привода графоаналитическим методом и на ПЭВМ.

Часть 3 Расчет и выбор асинхронного электродвигателя для кратковременного режима работы. Определение температуры нагрева

- 3.1 Выбрать асинхронный электродвигатель из серии 4AP для кратковременного режима работы при заданной нагрузке и продолжительности работы 10 мин.
- 3.2 Определить превышение температуры и построить зависимость $\tau = f(t)$ за весь период работы для двигателей, выбранных по условиям нагрева и по условиям запуска. Сделать заключение об использовании теплового ресурса выбранного электродвигателя.

Часть 4 Расчет характеристик при частотном регулировании угловой скорости асинхронного электродвигателя

- 4.1. Для асинхронного электродвигателя серии 4A, выбранного в части 2, рассчитать параметры схемы замещения по каталожным данным.
- 4.2. Построить механические характеристики двигателя при частотном регулировании по закону U/f = const при частотах 10, 25, 50 и 100 Гц.

При выполнении курсовой работы необходимо иметь в виду следующее:

- 1. Массой троса можно пренебречь.
- 2. Электродвигатели необходимо выбирать с синхронной частотой вращения 1000 об/мин.
- 3. Время цикла в повторно-кратковременном режиме принять равным, согласно ГОСТ 183–74, стандартному 10 минут.
- 4. Отношение $\alpha = r_{1/} r_{2}$ принять равным единице.
- 5. Момент сопротивления при спуске и подъеме считать неизменным.
- 6. Снижение напряжения при пуске принять равным 7.5%.
- 7. Постоянную времени нагрева Т_н принять равной С/А.

Вариант курсовой работы выдает преподаватель. Исходные данные для своего варианта: скорость груза V, масса груза m, момент инерции $\mathcal{J}_{\it б}$, КПД передачи $\eta_{\it \Pi}$, продолжительность включения ПВ и тип схемы берутся из приложения 1.

Методические указания

Часть 1 Расчет и выбор асинхронного электродвигателя с фазным ротором. Расчет пусковых резисторов. Схемы автоматического управления

1.1 Для правильного выбора мощности электродвигателя подъемного механизма следует построить нагрузочную диаграмму (см. рисунок 2), для чего необходимо определить мощность сопротивления P_c , время работы t_p и время паузы t_n по выражениям:

$$P_c = \frac{m \cdot g \cdot v}{\eta_{\Pi}},\tag{1.1}$$

где m – масса груза, κz ;

g– ускорение силы тяжести, M/c^2 ;

v – скорость груза, M/c;

 η_{Π} – кпд передачи.

$$t_{\rm p} = t_{\rm q} \cdot \frac{\Pi B\%}{100},$$
 (1.2)

где t_{u} – время цикла $(t_{u} = 10 \text{ мин});$

 $\Pi B\%$ – продолжительность включения, %.

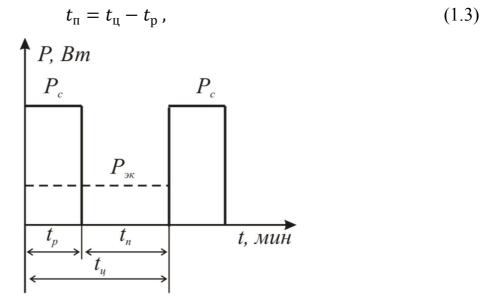


Рисунок 2. Нагрузочная диаграмма подъемного механизма

По нагрузочной диаграмме определяется режимы работы двигателя и эквивалентная мощность $P_{\scriptscriptstyle 9 \rm K}$.

Повторно-кратковременным номинальным режимом работы (S3) называется режим, при котором кратковременные периоды неизменной номинальной нагрузки (рабочие периоды) чередуются с периодами отключения двигателя (паузами), причем как рабочие периоды, так и паузы не настолько длительны, чтобы превышения температуры могли достигнуть установившихся значений.

Эквивалентная мощность — это такая мощность, при работе с которой за весь цикл работы выделяется столько же тепла, сколько при фактическом графике нагрузки.

Мощность электродвигателя выбирается равной или большей эквивалентной мощности.

$$P_{H} \ge P_{9K}, \tag{1.4}$$

где P_{H} – номинальная мощность двигателя, κBm ;

 $P_{\scriptscriptstyle 9 \kappa}$ — эквивалентная мощность в нагрузочной диаграмме, находим по выражению:

$$P_{\mathfrak{I}K} = \sqrt{\frac{P_{c}^{2} \cdot t_{p}}{t_{p} + \beta_{o} \cdot t_{\pi}}}, \qquad (1.5)$$

где β_0 – коэффициент ухудшения охлаждения двигателя в период паузы $(\beta_0 = 0.5)$.

Для обеспечения надежного пуска двигателя,с учетом снижения напряжения (ΔU =7,5%), получают пусковой момент и проверяют двигатель на надежность пуска по условию:

$$\kappa_u^2 \cdot M_{\Pi} \ge M_{TD} + 0.25 \cdot M_{H},$$
(1.6)

где M_{TP} – момент трогания рабочей машины, H:M;

 M_{II} — пусковой момент электродвигателя, H-M;

 κ_u – коэффициент, учитывающий снижение напряжения при пуске:

$$\kappa_u = 1 - \frac{\Delta U}{100},\tag{1.7}$$

По паспортным данным двигателя определяют номинальный и критический моменты. У асинхронных двигателей с фазным ротором в паспортных

данных отсутствует кратность пускового момента, поэтому пусковой момент принимают равным критическому с учетом снижения напряжения.

$$M_{\rm Ke} = M_{\rm II} \tag{1.8}$$

Синхронная скорость вращения электродвигателя задана (n_o =1000 об/мин). Исходя из этого, определяется синхронная частота вращения (ω_o).

$$\omega_o = \frac{2 \cdot \pi \cdot n_0}{60},\tag{1.9}$$

Номинальная частота вращения.

$$\omega_{\rm H} = \omega_{\rm O} \cdot (1 - s_{\rm H}) \,, \tag{1.10}$$

где S_H - номинальное скольжение двигателя.

Номинальный и критический моменты на естественной определяются выражениями

$$M_{\rm H} = \frac{P_{\rm H}}{\omega_{\rm H}},\tag{1.11}$$

$$M_{\rm Ke} = \mu_{\rm K} \cdot M_{\rm H} \tag{1.12}$$

где $\mu_{\scriptscriptstyle K}$ - кратность критического момента.

Для определения момента трогания необходимо определить момент сопротивления и соответствующее ему скольжение на механической характеристике электродвигателя (см. рисунок 3).

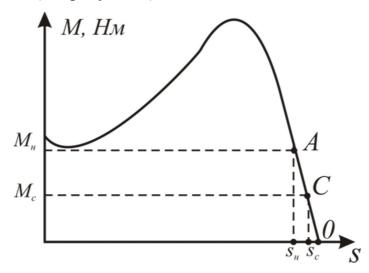


Рисунок 3.. Механическая характеристика двигателя

Из подобия треугольников (s_HAO) и (s_cCO) следует:

$$\frac{s_c}{s_{\scriptscriptstyle H}} = \frac{M_c}{M_{\scriptscriptstyle H}},\tag{1.13}$$

Момент сопротивления (M_c) и момент номинальный (M_H) выразим через мощность (1.14) и (1.15) и подставим в выражение (1.13) и находим скольжение момента сопротивления (s_c) .

$$M_{c} = \frac{P_{c}}{\omega_{c}} = \frac{P_{c}}{\omega_{0} \cdot (1 - s_{c})}$$
, (1.14)

$$M_{H} = \frac{P_{H}}{\omega_{H}} = \frac{P_{H}}{\omega_{0} \cdot (1 - S_{H})} , \qquad (1.15)$$

$$s_{\rm c} = \frac{1 + \sqrt{1 - \frac{P_{c \cdot S_{\rm H}}}{\omega_0 \cdot M_{\rm H}}}}{2},\tag{1.16}$$

Для выбора редуктора определяют скорость барабана при заданной скорости подъема груза (ω_{δ}) и передаточное отношение (i):

$$\omega_6 = \frac{2 \cdot v}{D_6},\tag{1.17}$$

где v – скорость груза, M/c;

 D_{δ} - диаметр барабана, м.

$$i = \frac{\omega_{\rm c}}{\omega_{\rm o}},\tag{1.18}$$

где ω_c – частота вращения с моментом сопротивления, $pad/ce\kappa$.

Максимальный крутящий момент редуктора находят по формуле:

$$M_{max} = m \cdot g \cdot \frac{D_6}{2}, \tag{1.19}$$

где $D_{\tilde{o}}$ - диаметр барабана, M.

По величине крутящего момента выбирают редуктор, как правило, цилиндрический, так, чтобы максимальный момент двигателя и передаточное отношение находились в пределах момента и отношения выбранного редуктора. Марку выбранного редуктора необходимо раскрыть в курсовой работе.

1.2. При расчете пусковых резисторов в цепи обмотки ротора требуется определить полное их сопротивление, число ступеней и сопротивление каждой ступени. Для расчета пусковых резисторов необходимо определить пусковой момент двигателя $M_{\Pi I}$, момент при отключении ступеней сопротивления $M_{\Pi 2}$ и скольжение s_e , которое соответствует моменту $M_{\Pi I}$ на естественной характеристике (в точке A, см. рисунок 4).

$$M_{\Pi 1} = \kappa_U^2 \cdot M_{\text{Ke}} \,, \tag{1.20}$$

$$M_{\pi 2} = (1, 1 \dots 1, 3) \cdot M_c$$
, (1.21)

где $M_C = M_{TP}$

Скольжение s_e при моменте $M_{\Pi I}$ определяется из упрощённой формулы Клосса:

$$s_{\rm e} = s_{\rm Ke} \cdot \left(\frac{M_{\rm Ke}}{M_{\rm \Pi 1}} - \sqrt{\left(\frac{M_{\rm Ke}}{M_{\rm \Pi 1}}\right)^2 - 1}\right),$$
 (1.22)

где $M_{\kappa e}$ -критический момент на естественной характеристике, H_{M} ;

 $s_{\kappa e}$ –критическое скольжение на естественной характеристике.

$$s_{\text{Ke}} = s_{\text{H}} \cdot \left(\mu_{\text{K}} - \sqrt{{\mu_{\text{K}}}^2 - 1}\right),$$
 (1.23)

Пуск двигателя происходит на первой искусственной характеристике, у которой $M_{\kappa ul} = M_{\Pi l}$ и $s_{\kappa ul} = 1$. Когда момент двигателя достигает значения $M_{\Pi 2}$, первая ступень пусковых резисторов отключается, а соответствующее этому моменту скольжение на первой искусственной характеристике определится как:

$$s_{\text{W1}} = s_{\text{KW1}} \cdot \left(\frac{M_{\text{\Pi1}}}{M_{\text{\Pi2}}} - \sqrt{\left(\frac{M_{\text{\Pi1}}}{M_{\text{\Pi2}}} \right)^2 - 1} \right), \tag{1.24}$$

После отключения первой ступени двигатель должен выходить на вторую искусственную характеристику при $M_{\kappa u2} = M_{n1}$ и $s_{\kappa u2} = s_{u1}$. Тогда при отключении второй ступени сопротивления при моменте M_{n2} скольжение определится как:

$$s_{\text{M2}} = s_{\text{KM2}} \cdot \left(\frac{M_{\text{\Pi1}}}{M_{\text{\Pi2}}} - \sqrt{\left(\frac{M_{\text{\Pi1}}}{M_{\text{\Pi2}}}\right)^2 - 1}\right),$$
 (1.25)

Аналогичным образом находятся все скольжения на искусственных характеристиках при моменте $M_{\Pi 2}$ до выполнения условия:

$$s_{un} \leq s_e$$
 (1.26)

где s_{un} - скольжение на последней искусственной характеристике при M_{n2} .

В том случае, если $s_{un} = s_e$, расчет искусственных характеристик окончен. Если $s_{un} > s_e$, необходимо моменту M_{n2} присваивать новые значения до тех пор, пока не будет выполняться условие:

$$S_{un} \approx S_e$$
 (1.27)

По данным строят естественную механическую и искусственные характеристики по упрощенной формуле Клосса, задаваясь скольжением (s) от 0 до 1.

$$M = \frac{2 \cdot M_{K}}{\frac{S}{S_{K}} + \frac{S_{K}}{S}}, \tag{1.28}$$

На диаграмме откладывают значения $M_{\pi 1}$ и $M_{\pi 2}$, (см. рисунок 4) и дополнительно выделяем на графике зависимость изменения момента двигателя при пуске до выхода в точку равновесия при заданной нагрузке.

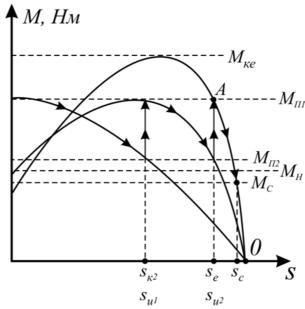


Рисунок 4. График зависимость изменения момента двигателя при пуске до выхода в точку равновесия

Полное добавочное сопротивление цепи ротора $R_{\mathcal{A}}$ подбирается так, чтобы $M_{\mathcal{A}^1}$ был равен критическому моменту с учетом снижения напряжения, но при $\omega=0$.

$$R_{\rm A1} = r_2 \cdot \left(\frac{1}{s_{\rm KP}} - 1\right),\tag{1.29}$$

Добавочные сопротивления в цепи ротора для соответствующих искусственных характеристик определяются по выражению:

$$R_{\underline{n}i} = r_2 \cdot \left(\frac{s_{\underline{\kappa}i}}{s_{\underline{r}a}} - 1\right), \tag{1.30}$$

где r_2 — активное сопротивление фазы обмотки ротора, O_M ;

 $s_{\kappa i}$ — критическое скольжение на i — характеристике;

 $s_{\kappa e}$ — критическое скольжение на естественной характеристике.

Активное сопротивление фазы обмотки ротора определяется по формуле:

$$r_2 = \frac{U_{2H} \cdot S_H}{\sqrt{3} \cdot I_{2H}},\tag{1.31}$$

где U_{2H} — линейное напряжение неподвижного ротора, B;

 I_{2H} — номинальный ток ротора, A.

Пусковой ток в обмотках статора можно определить из уравнения закона Ома для Г-образной схемы замещения двигателя:

$$I_{\Pi 1} = \frac{U_{\phi 1}}{z},\tag{1.32}$$

где $U_{\phi l}$ – фазное напряжение обмотки статора, B;

z — полное сопротивление по схеме замещения при к.з., O_M :

$$z = \sqrt{\left(r_1 + \frac{r_2' + R_{\text{Al}}'}{s}\right)^2 + \chi_{\text{K}}^2}, \tag{1.33}$$

где r_{I} – активное сопротивление фазы обмотки статора, O_{M} ;

 \vec{r}_{2} – приведенное к обмотке статора активное сопротивление фазы обмотки ротора, O_{M} ;

 $R_{\partial}^{'}$ — добавочное сопротивление в цепи ротора, приведенное к обмотке статора, O_{M} ;

 x_k — индуктивное сопротивление при к.з. , O_M .

Входящие в (1.33) активные сопротивления фаз обмоток статора (r_l) и ротора (r_2) определяются из выражений:

$$r_1 = \frac{\Delta P_{\nu_{\rm H}} - M_{\rm H} \cdot (\omega_{\rm o} - \omega_{\rm H})}{3 \cdot I_{\rm 1H}^2} , \qquad (1.34)$$

где I_{IH} номинальный ток обмотки статора, A;

 ΔP_{vH} — переменные потери двигателя при номинальной мощности, Bm.

$$\Delta P_{\nu_{\rm H}} = P_{\rm H} \cdot \frac{1 - \eta_{\rm H}}{\eta_{\rm H} \cdot (1 + \alpha)} , \qquad (1.35)$$

где α — коэффициент потерь, для асинхронных двигателей принимается α =0,5...0,7;

 $\eta_{\scriptscriptstyle H}$ – номинальный КПД электродвигателя.

$$r_2' = \frac{\Delta P_{\nu H}}{3 \cdot I_{1H}^2} - r_1 \,, \tag{1.36}$$

$$x_{K} = \sqrt{\left(\frac{3 \cdot U_{1\phi}^{2}}{2 \cdot M_{K} \cdot \omega_{0}} - r_{1}\right)^{2} - r_{1}^{2}},$$
(1.37)

где M_{κ} — критический момент двигателя, Нм.

Приведенное к обмотке статора добавочное сопротивление определяется из выражения:

$$R'_{\mathsf{A}1} = R_{\mathsf{A}1} \cdot \kappa_{\mathsf{TP}}^2 \,, \tag{1.38}$$

где κ_{mp} – коэффициент трансформации:

$$\kappa_{\rm Tp} = \frac{U_{\phi 1}}{U_{\phi 2}},\tag{1.39}$$

Пусковой ток ротора определяется по соотношению:

$$\frac{I_{1H}}{I_{2H}} = \frac{I_{1\Pi}}{I_{2\Pi}} , \qquad (1.40)$$

1.3. Для определения добавочных сопротивлений в цепи ротора при подъеме и опускании груза с половинной скоростью необходимо вычислить соответствующие значения скольжений при моменте двигателя, равном M_c . На естественной механической характеристике скольжение s_{ce} определяется из упрощенной формулы Клосса на ПЭВМ путем присвоения моменту двигателя значения M_c при коэффициенте снижения напряжения $\kappa_u = 1$.

При подъеме груза с половинной скоростью скольжение определяется:

$$s_{c.\pi o \pi} = 0.5 \cdot (1 - s_{ce}),$$
 (1.41)

при опускании с половинной скоростью:

$$s_{c.cn} = 1.5 - 0.5 \cdot s_{ce}$$
, (1.42)

$$s_{\text{ce}} = s_{\text{ke}} \cdot \left(\frac{M_{\text{ke}}}{M_{\text{c}}} - \sqrt{\left(\frac{M_{\text{ke}}}{M_{\text{c}}}\right)^2 - 1}\right),\tag{1.43}$$

Добавочное сопротивление при подъеме (R_{nod}) и опускании груза с половинной скоростью (R_{cn})определяется из выражений(1.40), (1.42) с использованием значений соответствующих скольжений из (1.38) и (1.39).

$$R_{\text{под}} = r_2 \cdot \left(\frac{s_{\text{с.под}}}{s_{\text{ce}}} - 1\right),$$
 (1.44)

$$R_{\rm cm} = r_2 \cdot \left(\frac{s_{\rm c.cm}}{s_{\rm ce}} - 1\right),\tag{1.45}$$

Пусковой ток в обмотках статора при подъеме ($I_{\Pi O \Pi I}$) и опускании груза с половинной скоростью ($I_{C \Pi I}$) определяется из выражений (1.44)и (1.45) с использованием значений соответствующих добавочных сопротивлений из (1.41) и (1.42) с учетом приведенное к обмотке статора добавочных сопротивлений выражения (1.38).Отношение токов статора и ротора (1.40) в любом режиме работы электродвигателя остается постоянным. Токи в обмотках статора и ротора

при работе на искусственных характеристиках при спуске и подъеме груза с половинной скоростью определять по соотношениям (1.32) и (1.40) при условии, что в выражении (1.33) используются соответствующие скольжения: при спуске, подъеме груза с половинной скоростью и при работе на естественной характеристике с моментом M_c .

1.4 Для управления асинхронными двигателями широко используются релейно-контакторные аппараты. При релейно-контакторном управлении электродвигателем процесс его пуска обычно автоматизируется, что устраняет возможные ошибки при ручном управлении. Для пуска электродвигателя в этом случае требуется лишь нажать кнопку управления или повернуть в рабочее положение рукоятку командоконтроллера. У асинхронных электродвигателей с фазным ротором пусковые резисторы замыкаются накоротко по ступеням при помощи контакторов, управление которыми осуществляется в функции ЭДС (скорости), тока или времени согласно заданию.

В курсовой работе необходимо составить две схемы в функции того параметра, который указан в задании: схему управления пуска электродвигателя с использованием кнопочных станций и схему управления реверсивным электроприводом с использованием командоконтроллера. В схеме с использованием командоконтроллера необходимо предусмотреть защиту от самозапуска при временном пропадание (или снижение) напряжения.

Часть 2 Расчет и выбор асинхронных электродвигателей при повторно - кратковременном режиме работы. Определение времени разбега и допустимого числа включений электродвигателя

2.1. Для повторно-кратковременного режима работы (S3) выпускается серия специальных электродвигателей, рассчитанных на этот режим – это двигатели серии 4AC (двигатели с повышенным скольжением). Эти электродвигатели рассчитываются на работу при стандартных продолжительностях включения

(ПВ): 15; 25; 40 и 60%.В технической литературе приводятся величины мощности двигателя для всех значений ПВ. За номинальную мощность для серии 4АС принимается мощность при ПВ = 40%. Длительность рабочего цикла не должна превышать 10 мин. (ГОСТ 183 – 74).

Для выбора двигателя данной серии необходимо иметь фактическую относительную продолжительность включения (ПВ указывается в задании) и мощность сопротивления (P_c) по выражению (1.1).

Если продолжительность включения окажется нестандартной, следует мощность нагрузки P_c пересчитать на ближайшее большее стандартное значение относительной продолжительности включения:

$$P_{\rm c}' = \frac{P_{\rm c}}{\sqrt{\frac{\varepsilon_{\rm CT}}{\varepsilon_{\rm \phi}} + \alpha \cdot \left(\frac{\varepsilon_{\rm CT}}{\varepsilon_{\rm \phi}} - 1\right)}},$$
(2.1)

где P_c — мощность сопротивления при фактической продолжительности включения, Bm;

 P_{c} — мощность сопротивления, приведенная к стандартной ПВ (ε_{cm}), Bm; α = (0,5...0,7) — коэффициент потерь;

 ε_{ϕ} – фактическая продолжительность включения по заданию:

$$\varepsilon_{\Phi} = \frac{t_{\rm p}}{t_{\rm p} + t_{\rm o}},\tag{2.2}$$

По полученному значению мощность сопротивления, приведенная к стандартному значению (ε_{cm}) выбирают двигатель так, чтобы его номинальная мощность, при принятой по формуле (2.1) стандартной продолжительности включения, была равной или большей.

$$P_{\rm HCT} \ge P_C' \,, \tag{2.3}$$

после чего двигатель необходимо проверить по условию запуска (1.6).

При повторно-кратковременном режиме работы могут быть использованы двигатели продолжительного режима (SI) из серии 4A. Выбор в этом случае производится аналогично выбору двигателя из серии 4AK (п. 1.1).

Выбранный двигатель из серии 4А необходимо также проверить по условию надежного пуска (1.6).

2.2. Допустимое число включений в час можно определить по выражению:

$$h_{\text{доп}} = 3600 \cdot \frac{\Delta P_{\text{H}} \cdot \beta \cdot (1 - \varepsilon_{\phi}) + (\Delta P_{\text{H}} - \Delta P_{\phi}) \cdot \varepsilon_{\phi}}{\Delta A_{\text{\Pi}} + \Delta A_{\text{T}}} , \qquad (2.4)$$

где ΔP_{H} – потери мощности при номинальной нагрузке, Bm;

 ΔP_{ϕ} – фактические потери мощности (при нагрузке P_c), Bm,

 eta_0 — коэффициент ухудшения охлаждения двигателя в период паузы (eta_0 =0,5);

 ε_{ϕ} – фактическая продолжительность включения;

 ΔA_n – потери энергии при пуске, Дж;

 ΔA_{m} – потери энергии при торможении, \mathcal{A}_{m} , (принять равными нулю).

Номинальные и фактические потери определяются из выражений:

$$\Delta P_{\rm H} = P_{\rm H} \cdot \frac{1 - \eta_{\rm H}}{\eta_{\rm H}} , \qquad (2.5)$$

$$\Delta P_{\Phi} = \Delta P_{\rm H} \cdot \frac{\alpha - x^2}{\alpha + 1} , \qquad (2.6)$$

где x – коэффициент загрузки:

$$x = \frac{P_C}{P_H} , \qquad (2.7)$$

При решении задач по определению времени разбега электропривода и потерь энергии в роторе электродвигателя необходимо в уравнение механической характеристики двигателя (в упрощенную формулу Клосса) ввести корректировочный коэффициент, позволяющий получить механическую характеристику с действительным пусковым моментом, т.е. записать уравнение в виде:

$$M_{\rm A} = \frac{2 \cdot M_k \cdot (1 + \alpha \cdot \varepsilon)}{\frac{s}{s_k} + \frac{s_k}{s} + 2 \cdot \varepsilon} , \qquad (2.8)$$

где α - поправочный коэффициент, ($\alpha = \frac{r_1}{r_2} \approx 1$);

 s_{κ} – критическое скольжение;

 ε - поправочный коэффициент, ($\varepsilon \approx s_k$).

Время разбега определяется из основного уравнения движения:

$$t(s) = J \cdot \omega_o \cdot \int_{s_2}^{s_1} \frac{ds}{M_{\pi}(s) - M_{c}(s)} , \qquad (2.9)$$

где J – приведенный к скорости вала двигателя момент инерции подвижных частей подъёмного механизма ($\kappa z \cdot m^2$), определяемый как:

$$J = k \cdot J_{\mu} + J_6 \cdot \frac{1}{i^2} + m \cdot \frac{v^2}{\omega_{\mu}^2} , \qquad (2.10)$$

где k – коэффициент, учитывающий моменты инерции передаточного механизма (k = 1,2);

 J_{∂} – момент инерции ротора двигателя, $\kappa \varepsilon \cdot M^2$;

 J_{δ} – момент инерции барабана, $\kappa \epsilon \cdot m^2$;

 ω_{∂} – угловая скорость вала двигателя, $pa\partial/ce\kappa$;

i — передаточное число, определяемое как:

$$i = \frac{\omega_{\pi}}{\omega_{6}} \,, \tag{2.11}$$

где ω_{δ} – угловая скорость барабана:

$$\omega_{6} = \frac{2 \cdot v}{D_{6}} \,, \tag{2.12}$$

Потери энергии в роторе определяются из уравнения потерь:

$$A_p(s) = \int_{t_2}^{t_1} M_{\mathcal{A}}(s) \cdot \omega_o \cdot s \cdot ds , \qquad (2.13)$$

Из основного уравнения движения находим значение dt:

$$dt = -J \cdot \omega_o \cdot \frac{ds}{M_{\pi}(s) - M_c(s)} , \qquad (2.14)$$

Подставляя значение dt из (2.14) в (2.13), получим:

$$A_p = J \cdot \omega_0^2 \cdot \int_{s_2}^{s_1} \frac{M_{\pi}(s) \cdot s \cdot ds}{M_{\pi}(s) - M_{c}(s)} , \qquad (2.15)$$

где $M_c(s) = M_c$ – момент сопротивления, определяемый в 1-й части.

Потери в двигателе при пуске определяются как:

$$A_{\Pi} = A_p \cdot \left(\frac{r_1}{r_2'} + 1\right),\tag{2.16}$$

Учитывая, что $\alpha = \frac{r_1}{r_2'} \approx 1$, окончательно получим:

$$A_{\Pi} = 2 \cdot A_{p} \,, \tag{2.17}$$

Для построения зависимостей $M_{\partial s}=f(t)$ u $\omega=\varphi(t)$ (изменение момента и скорости двигателя в переходном процессе) необходимо предварительно построить механические характеристики двигателя и рабочей машины $M_{\partial}=f_{I}(\omega)$ u $M_{c}=f_{I}(\omega)$

 $f_2(\omega)$, (см. рисунок 5) . Механическая характеристика двигателя строится по координатам 5 точек: $(M_n, \omega = 0)$; (M_{min}, ω_{min}) ; $(M_\kappa, \omega_\kappa)$; (M_μ, ω_μ) ; u $(M=0, \omega_o)$. Механическая характеристика рабочей машины строится по уравнению $M_c = M_{mp}$.

Построение зависимостей $M_{\partial s} = f(t)$ и $\omega = \varphi(t)$ и определение времени разбега электропривода ведется графоаналитическим методом — методом пропорций. Полученное путем графических расчетов время разбега сравнить с результатами аналитического расчета времени на ПЭВМ.

Часть 3 Расчет и выбор асинхронного режима работы. Определение температуры нагрева

3.1. Правильно выбранным по нагреву электродвигателем при любом режиме работы считается тот, у которого в процессе работы превышение температуры максимально приближается к допустимому, но не превышает его.

Для полного использования по нагреву двигателя продолжительного режима (например, серии 4AP) при работе в кратковременном режиме его следует перегружать, т.е. выбирать, исходя из условия:

$$P_{\rm H} < P_{\rm c} \,, \tag{3.1}$$

По этому условию выбрать двигатель серии 4AP и для него определить коэффициенты термической ($\rho_{\scriptscriptstyle T}$) и механической перегрузок ($\rho_{\scriptscriptstyle M}$):

$$\rho_{\rm T} = \frac{1}{1 - e^{\left(\frac{-t_p}{T_{\rm H}}\right)}},\tag{3.2}$$

$$\rho_{\rm M} = \sqrt{\rho_{\rm T} \cdot (1 + \alpha) - \alpha} \,, \tag{3.3}$$

где t_p - время работы, $ce\kappa$.;

 T_{H} – постоянная времени нагрева, *сек*.;

 $\alpha = (0,5...0,7)$ – коэффициент потерь.

Постоянная времени нагрева определяется как:

$$T_{\rm H} = \frac{c}{A},\tag{3.4}$$

где $C = c_o \cdot m$ – теплоемкость двигателя, $\mathcal{Д} \mathcal{M} / ^o C$;

 c_o – удельная теплоемкость (берется по стали), \mathcal{L} ж $/\kappa z \cdot zpad$;

m — масса электродвигателя, κz ;

A– теплоотдача двигателя, $Дж/c \cdot гра∂$;

$$A = \frac{\Delta P_{\rm H}}{\tau_{\rm H}},\tag{3.4}$$

где τ_{H} — номинальное превышение температуры, соответствующее нагревостойкости изоляции (принимается по таблице 1).

Изоляция двигателей 4A по классам нагревостойкости (ГОСТ 8865-93) выполняется для двигателей с высотами оси вращения 56...63 мм – класса E; 71...132 мм - класса B; 150...365 мм – класса F.

Таблица 1 Классы нагревостойкости и соответствующие им температуры

Класс изоляции по нагревостойкости	A	Е	В	F	Н
Предельно допустимая температура, ${}^{o}C$	105	120	130	155	180
Номинальное превышение температуры, ${}^{o}C$	65	80	90	115	140

После определения коэффициента механической перегрузки производится расчет потребной мощности электродвигателя. По известной мощности нагрузки P_c и найденному коэффициенту механической перегрузки определяется расчетная мощность двигателя:

$$P_{\text{pac}} = \frac{P_c}{P_{\text{M}}} , \qquad (3.5)$$

Номинальная мощность электродвигателя выбирается равной или большей расчетной мощности.

$$P_{\rm H} \ge P_{\rm pac}$$
, (3.6)

Для выбранного по этому условию электродвигателя необходимо рассчитать превышение температуры в конце рабочего цикла и далее проверить по условиям запуска.

Если данный двигатель не обеспечивает надежного пуска, необходимо произвести выбор следующего по мощности. Для этого двигателя также рассчитать превышение температуры в конце рабочего цикла и сопоставить его с нагревом двигателя, выбранного по условиям нагрева и перегрузочной способности. 3.2. Превышение температуры двигателя в любой момент рабочего периода определяется по уравнению нагрева:

$$\tau = \tau_{y\phi} \cdot \left(1 - e^{-\frac{t}{T_H}}\right) , \qquad (3.9)$$

Превышение температуры в конце рабочего периода определяется как:

$$\tau_{t_p} = \tau_{y\phi} \cdot \left(1 - e^{-\frac{t_p}{T_H}}\right), \tag{3.10}$$

где $\tau_{y\phi}$ – установившееся превышение температуры при нагрузке P_c :

$$\tau_{y\phi} = \tau_{H} \cdot \frac{\Delta P_{\phi}}{\Delta P_{H}} , \qquad (3.11)$$

где ΔP_{ϕ} – потери мощности при нагрузке $P_c(2.6)$, Bm;

 ΔP_{H} – номинальные потери мощности (2.5), *Bm*.

Для выбранных по условиям нагрева и запуска двигателей построить графики изменения превышения температуры за рабочий цикл.

Часть 4 Расчет характеристик при частотном регулировании угловой скорости асинхронного электродвигателя при изменении напряжения

4.1. Для определения параметров двигателя $(r_1, r_2, x_1, x_2, I_{2h})$ достаточно воспользоваться упрощенной Γ – образной схемой замещения (см. рисунок 5). При этом ошибка будет в пределах допустимой для инженерных расчетов.

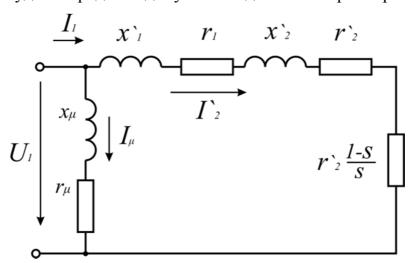


Рисунок 5 Упрощённая Γ – образная схема замещения одной фазы асинхронного электродвигателя

Параметры схемы замещения рассчитать по формулам (1.31...1.34).

4.2. Для построения механических характеристик асинхронного двигателя при частотном регулировании скорости необходимо в уравнение механической характеристики в параметрической форме ввести относительные значения напряжения и частоты.

$$M = \frac{m \cdot U_{\text{H}}^2 \cdot u^2 \cdot r_2' \cdot s}{\omega_{\text{oH}} \cdot \varphi \cdot \left[(r_1 \cdot s + r_2')^2 + x_k^2 \cdot s^2 \right]} , \tag{4.1}$$

где $u = U/U_{\scriptscriptstyle H}$ и $\varphi = f/f_{\scriptscriptstyle H}$ — соответственно относительные напряжение и частота тока;

 $\omega_{o\scriptscriptstyle H}$ – синхронная скорость при номинальной частоте тока;

m – количество фаз в двигателе, m=3.

При частотном регулировании скорости по закону U/f = const эти относительные величины между собою равны, т.е. $u = \varphi$:

$$M = \frac{m \cdot U_{1H}^2 \cdot u^2 \cdot r_2' \cdot (\omega_{0H} \cdot \varphi - \omega)}{\left[r_1 \cdot (\omega_{0H} \cdot \varphi - \omega) + r_2' \omega_{0H} \cdot \varphi\right]^2 + x_{\nu_H}^2 \cdot \varphi^2 \cdot (\omega_{0H} \cdot \varphi - \omega)^2} , \tag{4.2}$$

Подставляя в выражение (4.2) значения найденных по (1.31...1.34) параметров двигателя и величин относительного напряжения ($u = \varphi = 0.2$; 0.5; 1.0 и 2.0), строятся соответствующие характеристики. Для их построения необходимо использовать ПЭВМ.

Список источников

- 1. Басов, А.М. Основы электропривода и автоматическое управление электроприводом в сельском хозяйстве [Текст] / учеб. пособие для вузов / А. М. Басов, А. Т. Шаповалов, С. А. Кожевников. М : Колос, 1972. 344 с.: ил. (Учебники и учебные пособия для вузов)
- 2. Симоненко, А.С. Основы электропривода [Текст] / учебное пособие для студентов специальности 110302 «Электрификация и автоматизация сельского хозяйства» очной и заочной форм обучения / А.С. Симоненко 2-е изд., стереотип. Кострома : КГСХА, 2010. 182 с. (Учебник и учебное пособие для вузов)
- 3. Кадмин, Н.Е. Основы электропривода [Текст]/учебное пособие для студентов высших сельскохозяйственных учебных заведений / Н.Е. Кадмин. М.: ФГПУ ВПО МГАУ, 2007. 217с. (Учебник и учебное пособие для вузов) ISBN 978–5–86785–207–8
- 4. Электропривод: Методические рекомендации по выполнению курсовой работы для студентов спец. 110302 "Электрификация и автоматизация сельского хозяйства" очной и заочной форм обучения [Текст] / [А.С. Симоненко]; Костромская ГСХА. Каф. электропривода и электротехнологии. 3-е изд., испр. доп. Кострома: КГСХА, 2008. 22 с. (методические рекомендации)

ПРИЛОЖЕНИЕ А Варианты задания к курсовой работе

Ва- ри- ант, №	Тип схемы	Масса, m, кг	Скор. груза, <i>v ,м/с</i>	Диам. бараб. <i>D</i> , м	Момент инерц., <i>J, кг</i> м ²	КПД _{η_{пер}}	ПВ%
1		800	1,5	0,4	17	0,9	12
2	1	700	1,5	0,5	20	0,8	20
3	В функции	900	1,5	0,4	17	0,86	30
4	скорости	750	1,2	0,35	10	0,9	12
5		800	1,2	0,4	17	0,8	20
6		1200	1,2	0,35	10	0,86	30
7	D 1	1500	1,0	0,35	8	0,9	12
8	В функции	1700	1,0	0,35	10	0,8	20
9	времени	1900	1,0	0,35	8	0,85	30
10		2000	0,8	0,4	10	0,9	12
11		2700	0,8	0,36	8	0,8	20
12	D 4	3000	0,8	0,36	10	0,85	30
13	В функции	2500	0,6	0,5	20	0,9	12
14	тока	3300	0,6	0,4	8	0,8	20
15		3700	0,7	0,5	20	0,65	30
16		3500	0,6	0,45	11	0,8	35
17	D 4	3100	0,7	0,5	12	0,9	45
18	В функции	1800	0,7	0,4	13	0,85	50
19	скорости	3200	0,9	0,36	14	0,75	55
20		2600	0,9	0,45	15	0,8	20
21		2100	0,9	0,5	16	0,85	17
22	D 4	2300	1,3	0,55	18	0,9	12
23	В функции	1400	1,3	0,46	19	0,85	18
24	времени	1100	1,3	0,48	20	0,75	20
25		600	1,4	0,37	6	0,85	35
26		1500	1,4	0,39	7	0,8	28
27	D 4	1600	1,4	0,52	9	0,9	37
28	В функции	1700	1,1	0,53	8	0,9	46
29	тока	700	1,1	0,36	15	0,7	50
30		850	1,1	0,37	12	0,75	52
31		800	1,6	0,35	6	0,8	12
32	D dym	900	1,6	0,4	7	0,86	17
33	В функции	1000	1,6	0,45	8	0,9	20
34	скорости	1100	0,7	0,5	15	0,75	28
35		1200	0,7	0,55	14	0,8	32

Продолжение приложения А

Ва- ри- ант, №	Тип схемы	Масса, <i>m, кг</i>	Скор. груза, v , м/с	Диам. бараб. <i>D</i> , м	Момент инерц., <i>J, кг</i> ·м ²	КПД _{¶пер}	ПВ%
36		1300	0,7	0,35	13	0,85	35
37	В функции времени	1400	0,8	0,4	12	0,9	45
38		1500	0,8	0,45	10	0,75	50
39		850	0,8	0,5	11	0,9	48
40		950	0,9	0,55	9	0,8	30
41		1700	0,9	0,4	17	0,85	27
42	D 4	1600	0,9	0,45	20	0,8	34
43	- В функции - тока	1900	1,1	0,36	18	0,75	12
44		1800	1,0	0,5	21	0,86	11
45		2000	1,0	0,55	19	0,9	10
46		2000	1,1	0,2	13	0,7	26
47	D dynnamu	2400	1,2	0,3	14	0,72	30
48	В функции	2500	1,3	0,8	15	0,8	33
49	скорости	2600	1,4	0,7	16	0,81	37
50		2100	1,5	0,6	17	0,63	41
51	D 1	2200	1,1	0,5	18	0,85	45
52		2300	1,2	0,4	19	0,78	50
53	В функции	2700	1,3	0,2	20	0,8	55
54	времени	3100	0,6	0,3	15	0,78	30
55		2100	1,4	0,4	13	0,87	25