МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ФГБОУ ВО КОСТРОМСКАЯ ГСХА

Кафедра высшей математики

МАТЕМАТИКА

Учебно-методическое пособие по организации самостоятельной и аудиторной работы и выполнению контрольных работ 1-3 для студентов 1 и 2 курсов направления подготовки 35.03.06 «Агроинженерия» заочной формы обучения

КАРАВАЕВО Костромская ГСХА 2015 УДК 512(076) ББК 22.1 М 34

Составители: сотрудники кафедры высшей математики Костромской ГСХА зав. кафедрой высшей математики Л.Б. Рыбина, доцент И.А. Батманова.

Рецензенты: д.п.н., профессор кафедры физики Костромской ГСХА И.А. Мамаева, к.ф.-м.н., доцент кафедры математики Костромского ГУ им. Н.А. Некрасова Н.Л. Марголина.

Рекомендовано к изданию методической комиссией инженерно-технологического факультета протокол № 4 от 18 июня 2015 года.

М 34 Математика: учебно-методическое пособие по организации самостоятельной и аудиторной работы и выполнению контрольных работ 1-3 для студентов 1 и 2 курсов направления подготовки 35.03.06 «Агроинженерия» заочной формы обучения / сост. Л.Б. Рыбина, И.А. Батманова. — Караваево: Костромская ГСХА, 2015. — 116 с.

Издание содержит программу дисциплины, задания для контрольных работ 1-3, общие требования к их выполнению, типовые задания с подробными решениями, вопросы для проведения промежуточной аттестации, список рекомендуемой литературы.

Учебно-методическое пособие предназначено для организации аудиторной и самостоятельной работы студентов 1 и 2 курсов направления подготовки 35.03.06 «Агроинженерия» заочной формы обучения.

УДК 512(076) ББК 22.1

ОГЛАВЛЕНИЕ

Введение	4
1. Содержание учебной дисциплины	5
1.1. Элементы линейной и векторной алгебры	5
1.2. Аналитическая геометрия на плоскости и в пространстве	
1.3. Введение в математический анализ	6
1.4. Дифференциальное исчисление функции одной переменной	
1.5. Интегральное исчисление функций одной переменной	
1.6. Дифференциальное исчисление функций нескольких переменных	
1.7. Интегральное исчисление функций нескольких переменных	
1.8. Элементы теории функций комплексной переменной	
1.9. Элементы дискретной математики	
1.10. Дифференциальные уравнения	
1.11. Ряды	
1.12. Теория вероятностей	9
экспериментальных данных	9
2. Общие требования к выполнению контрольных работ	11
3. Методические указания к организации самостоятельной работы студентов	1./
студентов	17
4. Контрольные вопросы для проведения промежуточной аттестации	15
5. Задания для контрольной работы 1	22
6. Задания для контрольной работы 2	29
7. Задания для контрольной работы 3	37
8. Решение типовых задач	47
Список рекомендуемых источников	109
Приложения	111

ВВЕДЕНИЕ

Учебное пособие по организации самостоятельной работы и выполнению контрольных работ 1-3 предназначено для студентов 1 и 2 курсов, обучающихся по направлению подготовки бакалавров 35.03.06 «Агроинженерия» заочной формы обучения.

Издание содержит программу дисциплины «Математика», общие требования по выполнению контрольных работ, рекомендуемую литературу, методические указания по организации самостоятельной работы, задания для контрольных работ 1-3 общие требования к их выполнению, типовые задания с подробными решениями, вопросы для проведения промежуточной аттестации. Необходимые справочные материалы содержатся в приложениях 1-4. Образец оформления титульного листа контрольной работы приведен в приложении 5.

Целями освоения дисциплины «Математика» являются:

- формирование личности студентов, развитие их интеллекта и способностей к логическому и алгоритмическому мышлению;
- обучение основным математическим методам, необходимым для анализа и моделирования устройств, процессов и явлений, при поиске оптимальных решений для осуществления научнотехнического прогресса и выборе наилучших способов реализации этих решений, методам обработки и анализа результатов численных и натуральных экспериментов.

1. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

1.1. Элементы линейной и векторной алгебры

- 1. Определители 2-го и 3-го порядков. Их свойства. Миноры и алгебраические дополнения. Вычисление определителей третьего порядка разложением по строке (столбцу). Понятие об определителе *n*-го порядка.
 - 2. Матрицы, их виды. Действия над матрицами. Обратная матрица.
- 3. Решение систем линейных алгебраических уравнений методом Гаусса, с помощью обратной матрицы и по формулам Крамера.
- 4. Векторы. Линейные операции над векторами и их свойства. Проекция вектора на ось. Координаты вектора в прямоугольной системе координат. Направляющие косинусы и длина вектора.
- 5. Скалярное произведение векторов и его основные свойства. Угол между двумя векторами. Условие ортогональности двух векторов. Механический смысл скалярного произведения.
- 6. Векторное произведение двух векторов и его основные свойства. Условие коллинеарности двух векторов. Вычисление площадей параллелограмма и треугольника с помощью векторного произведения. Физические приложения векторного произведения.
- 7. Смешанное произведение трех векторов и его основные свойства. Условие компланарности трех векторов. Вычисление объемов параллелепипеда и треугольной пирамиды с помощью смешанного произведения.

1.2. Аналитическая геометрия на плоскости и в пространстве

- 1. Прямоугольная декартова и полярная системы координат на плоскости.
- 2. Простейшие задачи на метод координат: расстояние между двумя точками, деление отрезка в данном отношении.
- 3. Прямая на плоскости. Различные формы уравнения прямой на плоскости. Точка пересечения двух прямых. Угол между прямыми. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- 4. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их определения и канонические уравнения. Технические приложения геометрических свойств кривых.
- 5. Плоскость в пространстве. Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей. Расстояние от точки до плоскости.
- 6. Прямая в пространстве. Угол между прямыми. Условия параллельности и перпендикулярности прямых.

- 7. Прямая и плоскость в пространстве. Точка пересечения прямой и плоскости. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости. Расстояния от точки до прямой и между параллельными прямыми.
- 8. Уравнение поверхности в пространстве. Цилиндрические поверхности. Сфера. Конусы. Эллипсоид. Гиперболоиды. Параболоиды. Построение их методом сечений. Технические приложения геометрических свойств поверхностей.

1.3. Введение в математический анализ

- 1. Функция одной переменной. Область определения. Множество значений. Способы задания. Четность, нечетность. Периодичность. Понятие сложной функции. Понятие обратной функции. Основные элементарные функции, их свойства и графики. Элементарные функции.
- 2. Предел функции в точке и на бесконечности. Бесконечно малые и бесконечно большие функции, их свойства. Сравнение бесконечно малых. Односторонние пределы. Основные теоремы о пределах. Первый и второй замечательные пределы.
- 3. Непрерывность функции в точке и на интервале. Точки разрыва, их классификация. Непрерывность элементарных функций. Свойства функций, непрерывных на отрезке.

1.4. Дифференциальное исчисление функции одной переменной

- 1. Задачи, приводящие к понятию производной. Определение производной функции. Геометрический и физический смыслы производной. Уравнения касательной и нормали к кривой.
- 2. Правила дифференцирования. Формулы дифференцирования. Понятие о производных высших порядков.
- 3. Дифференциал функции, его геометрический смысл. Применение дифференциала в приближенных вычислениях. Дифференциалы высших порядков.
 - 4. Правило Лопиталя.
- 5. Основные теоремы дифференциального исчисления (Ферма, Роля, Лагранжа) их геометрическая иллюстрация. Исследование функций с помощью производных. Исследование функции на монотонность. Точки экстремума, экстремумы. Исследование функции на выпуклость, вогнутость. Точки перегиба. Асимптоты функции. Общая схема исследования функций одной переменной и построения ее графика.
- 6. Нахождение наибольшего и наименьшего значений функции на промежутке. Решение задач с практическим содержанием на нахождение наибольшего и наименьшего значений функции.

1.5. Интегральное исчисление функций одной переменной

- 1. Первообразная. Неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов. Интегрирование подведением под знак дифференциала.
- 2. Замена переменной и интегрирование по частям в неопределенном интеграле.
 - 3. Интегрирование рациональных дробей.
 - 4. Интегрирование некоторых тригонометрических функций.
 - 5. Интегрирование некоторых иррациональных функций.
- 6. Задача о площади криволинейной трапеции, приводящая к понятию определенного интеграла по отрезку.
- 7. Определенный интеграл и его свойства. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле.
- 8. Применение определенного интеграла для вычисления площадей плоских фигур.
- 9. Применение определенного интеграла для вычисления объемов и площадей поверхности тел вращения.
- 10. Применение определенного интеграла для вычисления длины дуги кривой.
 - 11. Механические приложения определенного интеграла.
 - 12. Несобственные интегралы.

1.6. Дифференциальное исчисление функций нескольких переменных

- 1. Функция нескольких переменных. Область определения. График и линии уровня функции двух переменных. Предел и непрерывность функции двух переменных.
- 2. Частные производные первого порядка, их геометрический смысл. Полный дифференциал первого порядка. Частные производные второго порядка.
 - 3. Касательная плоскость и нормаль к поверхности.
 - 4. Исследование функции двух переменных на экстремум.
- 5. Производная по направлению и градиент функции нескольких переменных.
 - 6. Метод наименьших квадратов.

1.7. Интегральное исчисление функций нескольких переменных

- 1. Двойной интеграл, его основные свойства и вычисление.
- 2. Применение двойных интегралов для вычисления площадей фигур и объемов тел и решения физических задач.
- 3. Криволинейные интегралы 1 и 2 рода, их свойства, вычисление, применение.

1.8. Элементы теории функций комплексной переменной

- 1. Комплексные числа, действия над ними. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы комплексного числа. Формула Эйлера. Показательная форма комплексного числа. Корни из комплексных чисел.
- 2. Функции комплексной переменной. Предел и непрерывность функции комплексной переменной.
- 3. Производная функции комплексной переменной. Аналитические функции. Условия Коши-Римана.

1.9. Элементы дискретной математики

- 1. Элементы теории множеств: понятие множества; способы задания множеств; операции над множествами; декартово произведение множеств.
 - 2. Формулы комбинаторики.
- 3. Элементы математической логики: конъюнкция, дизъюнкция, импликация, отрицание; таблицы истинности.
- 4. Элементы теории графов: основные понятия, маршруты, цепи, пути, циклы, связность графа, ориентированные графы, способы задания графов.

1.10. Дифференциальные уравнения

- 1. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши для дифференциальных уравнениях первого порядка. Общее и частное решения.
- 2. Дифференциальные уравнения первого порядка с разделяющимися переменными. Однородные дифференциальные уравнения первого порядка. Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли.

- 3. Дифференциальные уравнения второго порядка. Задача Коши. Общее и частное решения. Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- 4. Линейные однородные и неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Теоремы о структуре общего решения линейного однородного и неоднородного дифференциальных уравнений второго порядка.

1.11. Ряды

- 1. Числовой ряд. Сходимость и сумма ряда. Основные свойства сходящихся рядов. Необходимый признак сходимости. Достаточные признаки сходимости числовых рядов с положительными членами: Даламбера, радикальный и интегральный признаки Коши. Признаки сравнения рядов. Геометрический ряд. Обобщенный гармонический ряд.
- 2. Знакочередующиеся ряды. Признак Лейбница. Условная и абсолютная сходимость ряда.
- 3. Степенные ряды. Теорема Абеля. Область сходимости степенного ряда. Ряды Тейлора и Маклорена. Разложение функций в степенные ряды. Применение степенных рядов в приближенных вычислениях.

1.12. Теория вероятностей

- 1. События, их виды. Классическое и статистическое определения вероятности события. Свойства вероятности. Действия над событиями. Теоремы сложения и умножения вероятностей.
 - 2. Формула полной вероятности. Формула Байеса.
- 3. Повторные независимые испытания. Формула Бернулли. Формула Пуассона. Локальная и интегральная теоремы Лапласа.
- 4. Дискретные случайные величины, способы их задания. Функция распределения дискретной случайной величины и ее свойства. Числовые характеристики дискретной случайной величины.
- 5. Непрерывные случайные величины. Функция распределения и плотность вероятности непрерывной случайной величины, их свойства. Числовые характеристики непрерывной случайной величины. Законы распределения дискретных и непрерывных случайных величин.
 - 6. Нормальный закон распределения.

1.13. Математическая статистика. Статистические методы обработки экспериментальных данных

1. Предмет математической статистики. Выборочный метод исследования. Генеральная совокупность и выборка. Вариационный ряд. Полигон частот, гистограмма. Эмпирическая функция распределения. Числовые характеристики вариационного ряда.

- 2. Точечные и интервальные оценки параметров генеральной совокупности.
- 3. Доверительные интервалы для параметров нормального распределения.
 - 4. Оптимальный объем представительной выборки.
- 5. Понятие статистической гипотезы. Основные этапы проверки статистических гипотез.
- 6. Регрессия. Уравнение линейной регрессии. Коэффициент корреляции.

2. ОБЩИЕ ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ

Контрольные работы должны выполняться студентом самостоятельно и по своему варианту. Номер варианта определяется по последней цифре шифра студента в зачетной книжке. Номера задач для своего варианта следует взять из таблиц 1-3.

Каждая контрольная работа должна быть выполнена в отдельной тетради в клетку, на внешней обложке которой должны быть прикреплен титульный лист, на следующей странице — лист задание. На титульном листе указываются: факультет, курс, группа, дисциплина, направление подготовки, номер контрольной работы, фамилия, имя, отчество студента, шифр.

Задачи в работе следует располагать по порядку, полностью переписывая условие. Решение задач следует излагать подробно.

На каждой странице тетради необходимо оставить поля шириной 3-5 см для замечаний рецензента.

Выполненная контрольная работа сдается в деканат, откуда она поступает на кафедру высшей математики.

Не зачтенные контрольные работы возвращаются студенту для исправления ошибок. Все исправления ошибок делаются в конце контрольной работы. Исправления в тексте прорецензированной работы не допускаются. Контрольную работу с выполненными исправлениями следует направить на повторное рецензирование на кафедру.

Таблица I. Номера задач для контрольной работы I

	11	<i>75</i>	£L	74	<i>SL</i>	<i>9L</i>	LL	<i>8L</i>	<i>6L</i>	08
	61	62	63	64	65	99	<i>L</i> 9	89	69	70
	51	52	53	54	55	56	57	58	59	09
аданий	41	42	43	44	45	46	47	48	49	50
Номера заданий	31	32	33	34	35	36	37	38	39	40
	21	22	23	24	25	26	27	28	29	30
	111	12	13	14	15	16	17	18	19	20
	1	2	3	4	5	9	7	8	6	10
Номер варианта	1	2	3	4	2	9	7	8	6	0

Таблица 2. Номера задач для контрольной работы 2

	171	172	173	174	175	176	177	178	179	180
	161	162	163	164	165	166	167	168	169	170
	151	152	153	154	155	156	157	158	159	160
	141	142	143	144	145	146	147	148	149	150
заданий	131	132	133	134	135	135	137	138	138	140
Номера заданий	121	122	123	124	125	126	127	128	129	130
	111	112	113	114	115	116	117	118	119	120
	101	102	103	104	105	106	107	108	109	110
	91	92	93	94	95	96	26	86	66	100
	81	82	83	84	85	98	87	88	68	06
Номер варианта	1	2	3	4	2	9	7	8	6	0

Таблица 3. Номера задач для контрольной работы 3

Номер варианта					Но	Номера заданий	ий				
1	181	191	201	211	221	231	241	251	261	271	281
2	182	192	202	212	222	232	242	252	262	272	282
3	183	193	203	213	223	233	243	253	263	273	283
4	184	194	204	214	224	234	244	254	264	274	284
S	185	195	205	215	225	235	245	255	265	275	285
9	981	196	506	216	226	236	246	256	566	276	286
7	187	197	207	217	227	237	247	257	267	277	287
8	188	198	208	218	228	238	248	258	268	278	288
6	189	199	209	219	229	239	249	259	569	279	189
0	190	200	210	220	230	240	250	260	270	280	290

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Изучение дисциплины «Математика» начинается на установочной сессии, где студенты слушают обзорные лекции, знакомятся с решением задач и получают рекомендации по самостоятельной работе.

После установочной сессии студенты приступают к самостоятельному изучению материала по указанной преподавателем литературе и выполняют контрольную работу 1 на 1-м курсе и контрольные работы 2 и 3 на 2-м курсе.

Следует помнить, что самостоятельная работа является основной формой обучения студента-заочника. Вначале рекомендуем изучить теоретический материал по источникам, приведенным в данном пособии (можно использовать и другую литературу). При чтении учебника необходимо внимательно разобрать рассматриваемые примеры решения задач. Далее решите задачи контрольной работы.

Если в процессе работы у студента возникают вопросы по изучаемому материалу, то он может обратиться за консультацией к преподавателю кафедры высшей математики (ауд. 211, 212, 214).

Завершающим этапом изучения дисциплины на 1-м курсе является сдача зачета, а на 2-м курсе — сдача зачета и экзамена. В данном пособии приведены контрольные вопросы для проведения аттестации по итогам освоения дисциплины «Математика» за 1-й и 2-й курсы.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1-й курс (зачет)

4.1. Элементы линейной и векторной алгебры

- 1. Определение определителей 2- и 3-го порядков. Свойства определителей.
- 2. Определения минора и алгебраического дополнения элемента определителя.
 - 3. Правило Крамера решения систем линейных уравнений.
 - 4. Понятие матрицы. Виды матриц.
 - 5. Действия над матрицами.
 - 6. Определение обратной матрицы. План нахождения обратной матрицы.
 - 7. Решение систем линейных уравнений матричным методом.
 - 8. Метод Гаусса решения систем линейных уравнений.
- 9. Определение координат вектора, их геометрический смысл. Нахождение координат вектора по координатам его начала и конца.
- 10. Нахождение модуля вектора и направляющих косинусов вектора по его координатам.
- 11. Линейные операции над векторами в геометрической и координатной формах.
- 12. Определение и свойства скалярного произведения векторов. Условие перпендикулярности двух векторов.
 - 13. Нахождение скалярного произведения векторов через их координаты.
- 14. Применение скалярного произведения для нахождения: а) угла между векторами; б) проекции вектора на вектор.
 - 15. Определение и свойства векторного произведения векторов.
- 16. Определение коллинеарных векторов. Условие коллинеарности векторов.
 - 17. Нахождение векторного произведения векторов через их координаты.
- 18. Применение векторного произведения векторов для: а) установления коллинеарности векторов; б) вычисления площадей параллелограмма и треугольника.
 - 19. Определение и свойства смешанного произведения векторов.
- 20. Определение компланарных векторов. Условие компланарности векторов.
- 21. Нахождение смешанного произведения векторов через их координаты.
- 22. Применение смешанного произведения для: а) установления компланарности векторов; б) вычисления объемов.

4.2. Аналитическая геометрия на плоскости и в пространстве

- 1. Расстояние между двумя точками на плоскости.
- 2. Деление отрезка в данном отношении. Координаты середины отрезка.
- 3. Уравнение прямой с угловым коэффициентом. Определение углового коэффициента.
 - 4. Уравнение прямой, проходящей через точку в данном направлении.
 - 3. Уравнение прямой, проходящей через 2 данные точки.
 - 4. Общее уравнение прямой, его частные случаи.
 - 5. Уравнение прямой в «отрезках на осях».
- 6. Формула для нахождения угла между двумя прямыми. Условия параллельности и перпендикулярности прямых.
 - 7. Расстояние от точки до прямой.
 - 9. Определение и каноническое уравнение окружности.
- 10. Определение и каноническое уравнение эллипса. Эксцентриситет, фокусы эллипса.
- 11. Определение и каноническое уравнение гиперболы. Эксцентриситет, фокусы, уравнения асимптот гиперболы.
- 12. Определение и каноническое уравнение параболы. Фокус, уравнение директрисы параболы (рассмотреть 4 вида параболы).
 - 13. Парабола, как график квадратного трехчлена.
- 14. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.
 - 15. Общее уравнение плоскости и его частные случаи.
 - 16. Уравнение плоскости, проходящей через три данные точки.
 - 17. Уравнение плоскости в «отрезках».
- 18. Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей.
 - 19. Расстояние от точки до плоскости.
 - 20. Параметрические уравнения прямой в пространстве.
 - 21. Канонические уравнения прямой в пространстве.
- 22. Уравнения прямой в пространстве, проходящей через две данные точки.
- 23. Общие уравнения прямой в пространстве и переход от них к каноническим уравнениям.
- 24. Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности двух прямых.
- 25. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.
 - 26. Нахождение точки пересечения прямой с плоскостью.
 - 27. Нахождение расстояния от точки до прямой в пространстве.

4.3. Введение в математический анализ

- 1. Определение предела функции одной переменной в точке.
- 2. Определение предела функции одной переменной на бесконечности.
- 3. Определения бесконечно большой и бесконечно малой функций.
- 4. Основные свойства бесконечно малых функций. Теорема о связи между бесконечно малой и бесконечно большой функциями.
- 5. Теорема о связи между функцией, ее пределом и бесконечно малой функцией.
 - 6. Основные теоремы о пределах.
 - 7. Первый замечательный предел и следствия из него.
 - 8. Второй замечательный предел.
 - 9. Сравнение бесконечно малых функций.
- 10. Определение эквивалентных бесконечно малых. Примеры эквивалентных бесконечно малых. Принцип замены эквивалентных бесконечно малых.
 - 11. Два определения непрерывности функции в точке.
 - 12. Определение точки разрыва. Классификация точек разрыва.
- 13. Основные теоремы о непрерывных функциях. Непрерывность элементарных функций.
 - 14. Свойства функций, непрерывных на отрезке.

4.4. Дифференциальное исчисление функции одной переменной

- 1. Определение производной.
- 2. Механический и геометрический смыслы производной.
- 3. Правило дифференцирования суммы, произведения и частного.
- 4. Определение сложной функции. Правило дифференцирования сложной функции.
- 5. Определение обратной функции. Правило дифференцирования обратной функции.
 - 6. Формулы дифференцирования.
- 7. Определение дифференциала функции одной переменной, его геометрический смысл.
 - 8. Правило Лопиталя.
- 9. Определения возрастающей и убывающей функций. Необходимые условия возрастания и убывания функции.
 - 10. Достаточные условия возрастания и убывания функции.
- 11. Определения точек максимума и минимума функции одной переменной. Необходимое условие экстремума функции.
 - 12. Достаточные условия экстремума функции одной переменной.
- 13. Определения выпуклого и вогнутого графиков функции. Достаточные условия выпуклости и вогнутости графика функции.

- 14. Определение точки перегиба. Достаточные условия существования точки перегиба.
 - 15. Определение асимптоты графика функции. Виды асимптот.
- 16. Нахождение наибольшего и наименьшего значений функции на промежутке.

2-й курс (зачет)

4.5. Интегральное исчисление функций одной переменной

- 1. Первообразная и неопределенный интеграл.
- 2. Свойства неопределенного интеграла.
- 3. Таблица неопределенных интегралов.
- 4. Замена переменной в неопределенном интеграле.
- 5. Интегрирование по частям в неопределенном интеграле.
- 6. Определение определенного интеграла и его свойства.
- 7. Вывод формулы Ньютона-Лейбница.
- 8. Замена переменной в определенном интеграле.
- 9. Формула интегрирование по частям в определенном интеграле.
- 10. Вычисление площади плоской фигуры с помощью определенного интеграла.
- 11. Вычисление длины дуги кривой с помощью определенного интеграла.
- 12. Вычисление объема тела вращения с помощью определенного интеграла.
 - 13. Несобственные интегралы.

4.6. Дифференциальное исчисление функций нескольких переменных

- 1. Определение функции двух переменных. Ее область определения, график.
 - 2. Определение предела функции двух переменных.
 - 3. Определение непрерывности функции двух переменных в точке.
- 4. Определения частных производных первого порядка функции двух переменных.
- 5. Определения частных производных второго порядка функции двух переменных.
 - 6. Полный дифференциал первого порядка функции двух переменных.
- 7. Определения точек максимума и минимума функции двух переменных. Достаточные условия экстремума функции двух переменных. План исследования функции двух переменных на экстремум.
 - 8. Касательная плоскость и нормаль к поверхности.
 - 9. Градиент.
 - 10. Производная по направлению.

4.7. Интегральное исчисление функций нескольких переменных

- 1. Определение двойного интеграла и его основные свойства.
- 2. Вычисление двойного интеграла в прямоугольной декартовой и полярной системах координат.
 - 3. Применение двойного интеграла для решения задач геометрии.
 - 4. Применение двойного интеграла для решения задач физики.
- 5. Определение криволинейного интеграла 1-го рода и его основные свойства.
- 6. Вычисление криволинейного интеграла 1-го рода при различных способах задания кривой.
 - 7. Приложения криволинейного интеграла 1-го рода.
- 8. Определение криволинейного интеграла 2-го рода и его основные свойства.
 - 9. Вычисление криволинейного интеграла 2-го рода.
 - 10. Формула Остроградского-Гаусса.
- 11. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования.
 - 12. Приложения криволинейного интеграла 2-го рода.

4.8. Элементы теории функций комплексной переменной

- 1. Алгебраическая форма записи комплексного числа. Изображение комплексных чисел на плоскости.
- 2. Сложение, умножение и деление комплексных чисел в алгебраической форме.
 - 3. Модуль и аргумент комплексного числа.
 - 4. Тригонометрическая и показательная формы комплексного числа.
- 5. Умножение, деление, возведение в степень комплексных чисел в тригонометрической форме.
 - 6. Корни из комплексных чисел.
 - 7. Понятие функции комплексной переменной.
 - 8. Предел и непрерывность функции комплексной переменной.
 - 9. Производная функции комплексной переменной.
 - 10. Аналитические функции. Условия Коши-Римана.

4.9. Элементы дискретной математики

- 1. Понятие множества. Способы задания множеств.
- 2. Операции над множествами.
- 3. Декартово произведение множеств.
- 4. Формулы комбинаторики.
- 5. Конъюнкция, дизъюнкция, импликация, отрицание.
- 6. Понятие графа. Способы задания графов.
- 7. Маршруты, цепи, пути, циклы, связность графа, ориентированные графы.

2-й курс (экзамен)

4.10. Дифференциальные уравнения

- 1. Дифференциальные уравнения первого порядка с разделяющимися переменными.
 - 2. Однородные дифференциальные уравнения первого порядка.
 - 3. Линейные дифференциальные уравнения первого порядка.
 - 4. Уравнения Бернулли.
- 5. Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- 6. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- 7. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью вида $P_n(x)$.
- 8. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью вида $P_n(x)e^{mx}$.
- 9. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью вида $e^{mx} (a \cos nx + b \sin nx)$.

4.11. Ряды

- 1. Определение числового ряда. Сходимость числового ряда. Необходимый признак сходимости.
- 2. Признаки сравнения рядов. Геометрический ряд. Обобщенный гармонический ряд.
 - 3. Признак Даламбера.
 - 4. Интегральный признак Коши.
- 5. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость.
- 6. Определение степенного ряда. Радиус, интервал, область сходимости.
 - 7. Ряды Тейлора и Маклорена.

4.12. Теория вероятностей

- 1. События, их виды. Классическое и статистическое определения вероятности события. Свойства вероятности.
 - 2. Сумма событий. Теоремы сложения вероятностей.
 - 3. Произведение событий. Теоремы умножения вероятностей.
 - 4. Формула полной вероятности.
 - 5. Формула Байеса.
 - 6. Повторные независимые испытания. Формула Бернулли.

- 7. Формула Пуассона.
- 8. Локальная и интегральная теоремы Лапласа.
- 9. Дискретные случайные величины, способы их задания. Функция распределения дискретной случайной величины.
 - 10. Числовые характеристики дискретной случайной величины.
 - 11. Биномиальное распределение.
 - 12. Распределение Пуассона.
 - 13. Гипергеометрическое распределение.
- 14. Непрерывные случайные величины. Функция распределения и плотность вероятности непрерывной случайной величины.
 - 15. Числовые характеристики непрерывной случайной величины.
 - 16. Равномерное распределение.
 - 17. Показательное распределение.
 - 18. Нормальный закон распределения.

4.13. Математическая статистика. Статистические методы обработки экспериментальных данных

- 1. Выборочный метод исследования. Генеральная совокупность и выборка. Вариационный ряд (дискретный и интервальный).
- 2. Гистограмма и полигон частот и относительных частот. Эмпирическая функция распределения и ее основные свойства.
 - 3. Числовые характеристики вариационного ряда.
- 4. Точечные оценки и их характеристики: несмещенность, эффективность, состоятельность.
- 5. Точечные оценки генеральной средней (математического ожидания), дисперсии, генеральной доли признака.
- 6. Интервальные оценки. Интервальное оценивание параметров нормального распределения.
- 7. Статистическая гипотеза, основная гипотеза, альтернативные гипотезы, ошибка первого рода или уровень значимости, уровень доверия, ошибка второго рода, мощность критерия, критические значения, область допустимых значений, критическая область, правосторонняя, левосторонняя, двусторонняя критические области.
 - 8. Основные этапы проверки статистических гипотез.
 - 9. Регрессия. Уравнение линейной регрессии.
 - 10. Коэффициент корреляции.

5. ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ 1

Задание 1-10

Решить систему линейных уравнений (табл. 4) тремя способами:

- 1) по формулам Крамера;
- 2) с помощью обратной матрицы;
- 3) методом Гаусса.

Таблица 4. Исходные данные для решения задач

Номер задания	Система	Номер задания	Система
1	$3x_1 + 2x_2 + x_3 = 6,$	2	$(x_1 + x_2 - x_3 = 2,$
	$\begin{cases} 2x_1 + 3x_2 + x_3 = 1, \end{cases}$		$\begin{cases} 8x_1 + 3x_2 - 6x_3 = -4, \end{cases}$
	$2x_1 + x_2 + 3x_3 = 7$		$-4x_1 - x_2 + 3x_3 = 5$
3	$2x_1 - x_3 = 1,$	4	$\int 3x_1 + 4x_2 + 2x_3 = 15,$
	$\begin{cases} 2x_1 + 4x_2 - x_3 = -7, \end{cases}$		$\begin{cases} 2x_1 - x_2 - 3x_3 = -9, \end{cases}$
	$x_1 + 8x_2 - 3x_3 = 12$		$x_1 + 5x_2 + x_3 = 20$
5	$\int x_1 + x_2 + 2x_3 = -4,$	6	$\int x_1 + x_2 - x_3 = -2,$
	$\begin{cases} 2x_1 - x_2 + 2x_3 = 3, \end{cases}$		$\begin{cases} 8x_1 + 3x_2 - 6x_3 = 12, \end{cases}$
	$4x_1 + x_2 + 4x_3 = -3$		$-4x_1 - x_2 + 3x_3 = -9$
7	$\int x_1 - 2x_2 + 3x_3 = -1,$	8	$\int 3x_1 + x_2 + 2x_3 = 1,$
	$\begin{cases} 2x_1 + 3x_2 - 4x_3 = 12, \end{cases}$		$\begin{cases} 2x_1 - x_2 - 3x_3 = 0, \end{cases}$
	$3x_1 - 2x_2 - 5x_3 = 5$		$x_1 + 5x_2 + x_3 = -3$
9	$\int x_1 + 2x_2 + 4x_3 = 6,$	10	
	$\begin{cases} 5x_1 + x_2 + 2x_3 = 3, \end{cases}$		$\begin{cases} 4x_1 + 11x_3 = 39, \end{cases}$
	$3x_1 - x_2 + x_3 = 12$		$2x_1 + 3x_2 + 4x_3 = 33$

Задание 11-20

Даны координаты точек A, B, C, D (табл. 5).

Требуется:

- 1) найти координаты векторов \overline{AB} , \overline{AC} , \overline{AD} и записать их разложение в системе орт;
- 2) найти угол между векторами \overline{AB} , \overline{AC} ;
- 3) найти площадь треугольника АВС;
- 4) найти объём пирамиды АВСД.

Таблица 5. Исходные данные для решения задач

Цомор золония		Координа	аты точек	
Номер задания	A	В	C	D
11	(3;-1;2)	(4;-1;-1)	(2; 0; 2)	(1; 2; 4)
12	(2;-1;2)	(3;-1;-1)	(1; 0; 2)	(0; 2; 4)
13	(3; 0; 2)	(4; 0; -1)	(2; 1; 2)	(1; 3; 4)
14	(2;-1;3)	(3;-1;0)	(1; 0; 3)	(0; 2; 5)
15	(3; 1; 2)	(4; 1; -1)	(2; 2; 2)	(1; 4; 4)
16	(2; 1; 2)	(3; 1; -1)	(1; 2; 2)	(0; 4; 4)
17	(1; 1; 2)	(2; 1; -1)	(0; 2; 2)	(-1; 4; 4)
18	(0; 1; 2)	(1; 1; -1)	(-1; 2; 2)	(-2; 4; 4)
19	(0; 2; 2)	(1; 2; -1)	(-1; 3; 2)	(-2; 5; 4)
20	(0; 2; 1)	(1; 2; -2)	(-1; 3; 1)	(-2; 5; 3)

Задание 21-30

Даны координаты вершин треугольника ABC (табл. 6). Найти:

- 1) длину стороны АВ;
- 2) уравнения сторон АВ и АС и их угловые коэффициенты;
- 3) внутренний угол А;
- 4) уравнение высоты CD и ее длину;
- 5) уравнение и длину медианы АЕ;
- 6) уравнение окружности, для которой CD служит диаметром;
- 7) точку пересечения медиан;
- 8) уравнение прямой, проходящей через точку A, параллельно стороне CD.

Таблица 6. Исходные данные для решения задачи

Номер задания	A	В	C
21	(-3; -2)	(0; 10)	(6; 2)
22	(1; 1)	(4; 13)	(10; 5)
23	(0; 3)	(3; 15)	(9; 7)
24	(-2;0)	(1; 12)	(7; 4)
25	(2;-1)	(5; 11)	(11; 3)
26	(3; -3)	(6; 9)	(12; 1)
27	(-1; 2)	(2; 14)	(8; 6)
28	(5; -4)	(8; 8)	(14; 0)
29	(-4; 5)	(-1; 17)	(5; 9)
30	(4; 4)	(7; 16)	(13; 8)

Задание 31-40

- 1. Дано уравнение параболы (табл. 7). Требуется найти координаты фокуса, уравнение директрисы и построить параболу.
- 2. Дано уравнение эллипса. Требуется найти координаты фокусов, эксцентриситет и построить эллипс.
- 3. Даны действительная полуось a и эксцентриситет ϵ гиперболы. Требуется составить каноническое уравнение гиперболы, найти координаты фокусов, уравнения асимптот и построить гиперболу.

	,,	. , , 110,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	r com p com	
Номер задания	Уравнение параболы	Уравнение эллипса	Действительная полуось гиперболы <i>а</i>	Эксцентриситет гиперболы є
31	$y^2 = -10x$	$4x^2 + y^2 = 16$	$2\sqrt{2}$	$\sqrt{2}$
32	$x^2 = 10y$	$9x^2 + 4y^2 = 36$	$3\sqrt{3}$	$\sqrt{2}$
33	$y^2 = 9x$	$4x^2 + y^2 = 36$	$2\sqrt{3}$	$\sqrt{2}$
34	$x^2 = -9y$	$9x^2 + y^2 = 9$	$\sqrt{5}$	$3\sqrt{2}$
35	$y^2 = -8x$	$x^2 + 9y^2 = 9$	$2\sqrt{5}$	$\sqrt{3}$
36	$x^2 = 8y$	$x^2 + 4y^2 = 16$	$3\sqrt{5}$	$\sqrt{5}$
37	$y^2 = 7x$	$16x^2 + y^2 = 16$	$4\sqrt{5}$	$3\sqrt{5}$
38	$x^2 = -7y$	$3x^2 + 4y^2 = 36$	$\sqrt{6}$	$\sqrt{2}$
39	$y^2 = -6x$	$x^2 + 9y^2 = 36$	$2\sqrt{6}$	$\sqrt{3}$
40	$x^2 = 6y$	$9x^2 + y^2 = 36$	7	$\sqrt{3}$

Таблица 7. Исходные данные для решения задач

Задание 41-50

Используйте координаты точек A, B, C, D соответственно из задач 11-20 (см. табл. 5).

Даны координаты точек A, B, C, D. Требуется:

- 1) написать уравнение плоскости АВС;
- 2) написать уравнение плоскости, проходящей через точку D параллельно плоскости ABC;
- 3) написать канонические и параметрические уравнения прямой AB;
- 4) написать канонические уравнения прямой, проходящей через точку D перпендикулярно плоскости ABC;
- 5) найти расстояние от точки D до плоскости ABC.

Задание 51-60 Найти пределы функций (табл. 8).

Таблица 8. Исходные данные для решения задач

Номер	Прадаци	Номер	Працаци
задания	Пределы	задания	Пределы
1	2	3	4
51	1) $\lim_{x \to -2} \frac{3x^2 + 5x - 2}{x^2 + 3x + 2}$	52	1) $\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 9}$
	2) $\lim_{x \to \infty} \frac{2x^5 - 7x + 2}{3x^5 + 6x^2 - 4}$		2) $\lim_{x \to \infty} \frac{3x^4 + 2x - 5}{4x^4 + 3x - 6}$
	3) $\lim_{x \to 5} \frac{\sqrt{x - 4} - \sqrt{6 - x}}{x - 5}$		3) $\lim_{x \to 5} \frac{\sqrt{x-2} - \sqrt{8-x}}{x-5}$
	$4) \lim_{x \to 0} \frac{tg 2x}{\sin 3x}$		$4) \lim_{x \to 0} \frac{\sin 4x}{2\cos 3x}$
	$5) \lim_{x \to \infty} \left(\frac{x-3}{x+4} \right)^{x-1}$		$5) \lim_{x \to \infty} \left(\frac{x-3}{x+4} \right)^{x-1}$
53	1) $\lim_{x \to 1} \frac{5x^2 - 4x - 1}{x^2 - 6x + 5}$	54	1) $\lim_{x \to -1} \frac{7x^2 + 8x + 1}{2x + 2}$
	$2) \lim_{x \to \infty} \frac{2x^3 - 3x + 2}{4x^3 - 2x - 7}$		2) $\lim_{x \to \infty} \frac{6x^5 - 3x^2 - 1}{2x^5 + x + 3}$
	3) $\lim_{x \to 3} \frac{x - 3}{\sqrt{x - \sqrt{6 - x}}}$		3) $\lim_{x \to 5} \frac{\sqrt{x-5} - \sqrt{9-x}}{x-7}$
	$4) \lim_{x \to 0} \frac{x \operatorname{tg} 3x}{\sin^2 2x}$		$4) \lim_{x \to 0} \frac{\sin 5x \operatorname{tg} 3x}{x^2}$
	5) $\lim_{x\to 0} (1-2x)^{4/x}$		5) $\lim_{x \to \infty} \left(\frac{5x+2}{5x-3} \right)^{2x+1}$
55	1) $\lim_{x \to -4} \frac{2x^2 + 6x - 8}{x^2 - 16}$	56	1) $\lim_{x \to 10} \frac{5x^2 - 51x + 10}{2x - 20}$
	$2) \lim_{x \to \infty} \frac{5x^6 + 5x^2 - 1}{4x^6 + 4x + 5}$		$2) \lim_{x \to \infty} \frac{6x^3 + 2x - 3}{8x^3 + 5x + 7}$
	3) $\lim_{x \to 5} \frac{\sqrt{x+3} - \sqrt{5-x}}{x-1}$		3) $\lim_{x \to 1} \frac{x-1}{\sqrt{x+7} - \sqrt{9-x}}$
	$4) \lim_{x \to 0} \frac{\sin 6x}{\text{tg}2x}$		$4) \lim_{x \to 0} \frac{3x \cos 5x}{\sin 3x}$
	5) $\lim_{x\to 0} (1+3x)^{5/x}$		5) $\lim_{x \to \infty} \left(\frac{4x - 3}{4x + 2} \right)^{2x + 1}$

1	2	3	4
57	1) $\lim_{x \to 3} \frac{2x^2 - 7x + 3}{x^2 - x - 6}$	58	1) $\lim_{x \to -1} \frac{3x^2 + 2x + 1}{2x^2 + 3x + 1}$
	$2) \lim_{x \to \infty} \frac{4x^4 + 2x^2 - 5}{5x^4 + x - 3}$		$2) \lim_{x \to \infty} \frac{3x^3 + 4x + 6}{3x^3 + 6x + 4}$
	3) $\lim_{x \to 4} \frac{x - 4}{\sqrt{x - 1} - \sqrt{7 - x}}$		3) $\lim_{x \to 2} \frac{\sqrt{x+1} - \sqrt{5-x}}{x-2}$
	$4) \lim_{x \to 0} \frac{2x \operatorname{tg} 4x}{\sin^2 6x}$		$4) \lim_{x \to 0} \frac{\sin 2x t g 4x}{x^2}$
	$\int \lim_{x \to 0} (2x+1)^{4/x}$		$5) \lim_{x \to \infty} \left(\frac{x-2}{x+3} \right)^{4-x}$
59	1) $\lim_{x \to 2} \frac{2x^2 - 5x + 2}{4x^2 - 7x - 2}$	60	1) $\lim_{x \to 4} \frac{-x^2 + 2x + 8}{x^2 - 16}$
	$2) \lim_{x \to \infty} \frac{5x^5 - 4x + 1}{3x^6 - 2x^2 - 3}$		$2) \lim_{x \to \infty} \frac{5x^5 + 4x^2 - 3}{2x^4 + 3x + 3}$
	3) $\lim_{x \to 2} \frac{\sqrt{x+1} - \sqrt{6-x}}{x-2}$		3) $\lim_{x \to 0} \frac{x}{\sqrt{x+5} - \sqrt{5-x}}$
	$4) \lim_{x \to 0} \frac{\sin 8x}{\text{tg5}x}$		$4) \lim_{x \to 0} \frac{4x \cos 7x}{\sin 2x}$
	$5) \lim_{x \to \infty} \left(\frac{x+3}{x+1} \right)^{x-2}$		$5) \lim_{x \to 0} (3x+1)^{6/x}$

Задание 61-70

Найти производные заданных функций (табл. 9).

Таблица 9. Исходные данные для решения задач

Номер задания	Функция	Номер задания	Функция
1	2	3	4
61	1) $y = (3x - 4\sqrt[3]{x} + 2)^4$	62	1) $y = (3x - 2\sqrt[3]{x^2} - 1)^2$
	$2) \ \ y = \frac{4x + 7 t g x}{\sqrt{1 + 9x^2}}$		$2) y = \frac{\arcsin 3x}{1 - 8x^2}$
	3) $y = \cos 3x \cdot e^{\sin x}$		3) $y = 2^{3x} \operatorname{tg} 2x$
	4) $y = \ln \operatorname{arctg} 2x$		$4) y = \cos \ln 5x$
	$5) \sin x + xy^2 = 0$		$5) x^3 y^2 - \cos y + 4 = 0$
	$\begin{cases} x = t - \ln t, \\ y = 3t^2 - 2t^3 \end{cases}$		$\begin{cases} x = a \operatorname{tg} t, \\ y = b \operatorname{sec} t \end{cases}$
	$\int_{0}^{\infty} \int y = 3t^2 - 2t^3$		$y = b \sec t$

	T		Прооолжение таолицы э
1	2	3	4
63	1) $y = (x^2 - \frac{1}{x^3} + 5\sqrt{x})^4$	64	1) $y = (4x^2 - \frac{3}{\sqrt{x}} + 4)^3$
	$2) y = \frac{\arcsin 7x}{x^4 + e^x}$		$2) y = \frac{\sin 2x}{\cos 5x}$
			$3) y = 2^{8x} \operatorname{tg} 3x$
	$3) y = e^{igx} \ln 2x$		4) $y = \arcsin \ln 4x$
	$4) y = \cos\sqrt{x^2 + 3}$		5) $x^2y^3 + x \ln y = 0$
	5) $\ln y + xy - 5 = 0$		
	6) $\begin{cases} x = t^2 + \ln t, \\ y = 2t^3 + 3t \end{cases}$		$\begin{cases} x = a(\sin t - t\cos t), \\ y = a(\cos t + \sin t) \end{cases}$
	$y = 2t^3 + 3t$		$(y = a(\cos t + \sin t))$
65	1) $y = (x^5 - \sqrt[3]{x} + 1)^5$	66	1) $y = (6x^2 - \frac{2}{x^4} + 5)^2$
	$2) \ \ y = \frac{\sqrt{1 - 4x^2}}{2^x + \tan x}$		$\cos 3x$
	- ' '&'		2) $y = \frac{\cos 3x}{\sqrt{3x^2 + 4}}$
	3) $y = e^{ctgx} \cdot \sin 4x$		3) $y = 3^{tgx} \arcsin(x^2)$
	$4) y = \sin \ln 5x$		4) $y = \ln \sin 6x$
	$5) tgy - xy^2 = 0$		5) $\sin y - xy^2 + 4 = 0$
	$\begin{cases} x = a\cos^2 t, \\ y = b\sin^3 t \end{cases}$		
	$y = b\sin^3 t$		$\begin{cases} x = \operatorname{arc} \operatorname{tg} 3t, \\ y = \ln(1 + 9t^2) \end{cases}$
67	1) $y = (x^3 - 4\sqrt[4]{x^3} + 2)^3$	68	1) $y = (x^2 - 2\sqrt[5]{x} + 4)^4$
	2) $y = \frac{\arctan 57x}{2 - 9x^2}$		2) $y = \frac{x^3 + e^x}{\sqrt{4 - 9x^5}}$
	$3) y = e^{\operatorname{ctgx}} \cos 6x$		3) $y = 4^{\cos x} \operatorname{arctg} 2x$
	$4) y = \sin \ln 2x$		4) $y = \ln \cos 5x$
	$\int_{0}^{2} x^{3}y^{3} - 2xy + 3 = 0$		5) $x^2y^2 - \cos x = 0$
	6) $\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t) \end{cases}$		$\begin{cases} x = 2t - \sin 2t, \\ y = 8\sin^3 t \end{cases}$
69	1) $y = (3x^5 - \frac{5}{x^3} - 2)^5$	70	1) $y = (x^4 + 2\sqrt[3]{x} + 1)^2$
			2) $y = \frac{\sqrt{3-5x^3}}{e^x - \cot x}$
	$2) y = \frac{\cos 6x}{\sin 3x}$		
	3) $y = e^{x^3} \text{tg} 7x$		3) $y = 2^{\sin x} \arcsin 2x$
	4) $y = \arcsin \ln 2x$		$4) y = \ln \cos 7x$
	$5) \cos(xy) - 2x = 0$		$5) \frac{x}{y} + xy - 2 = 0$
	$\int x = c t g t$		y
	$\begin{cases} x = c \operatorname{tg} t, \\ y = \sec^2 t \end{cases}$		6) $\begin{cases} x = \arcsin t, \\ y = 3t - t^3 \end{cases}$
	()		$y = 3t - t^3$

Задание 71-80

79

Исследовать данную функцию (табл. 10) методами дифференциального исчисления и построить ее график.

Исследование и построение графика рекомендуется проводить по следующей схеме:

- 1) найти область определения функции;
- 2) исследовать функцию на четность, нечетность;
- 3) исследовать функцию на непрерывность, найти точки разрыва, если они существуют, определить их род;
- 4) найти точки экстремума и экстремумы функции, определить интервалы возрастания и убывания функции;
- 5) найти точки перегиба графика функции, определить интервалы выпуклости и вогнутости графика функции;
- 6) найти асимптоты графика функции, если они имеются;
- 7) найти точки пересечения графика функции с осями координат; при необходимости можно дополнительно найти точки графика функции, давая значению x ряд значений и вычисляя соответствующие значения y;
- 8) построить график функции, используя результаты исследования.

	,	,	•
Номер задания	Функция	Номер задания	Функция
71	$y = \frac{x^2 - 14}{x - 4}$	72	$y = \frac{x^2 - 15}{x + 4}$
73	$y = \frac{x^2 + 16}{x + 3}$	74	$y = \frac{x^2 - 5}{x - 3}$
75	$y = \frac{x^2 + 21}{x - 2}$	76	$y = \frac{x^2 + 5}{x + 2}$
77	$y = \frac{x^2 + 8}{x + 1}$	78	$y = \frac{x^2 + 3}{x - 1}$

80

Таблица 10. Исходные данные для решения задач

6. ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ 2

Задание 81-90

Найти неопределенные интегралы (табл. 11).

Таблица 11. Исходные данные для решения задач

Номер задания	Интегралы	Номер задания	Интегралы
1	2	3	4
81	1) $\int \left(3x^2 + \frac{8}{x^5} + 11\sqrt[9]{x^2}\right) dx$	82	$1) \int \left(2 - \frac{3}{x^4} - \frac{1}{\sqrt[3]{x^2}}\right) dx$
	$2) \int \sqrt{\cos x} \sin x dx$ $3) \int \ln x dx$		$2) \int \frac{x}{2+x^4} dx$
	4) $\int \frac{4x-1}{x^2-4x+8} dx$		3) $\int (8x - 2)\sin 5x dx$ $\Rightarrow 9x + 10$
	$5) \int \cos^2 x \sin^3 x dx$		$4) \int \frac{9x+10}{x^2-6x+10} dx$ $5) \int \cos^4 2x dx$
83	$1) \int \left(5x^4 - \frac{3}{x^4} - \frac{2}{\sqrt{x}}\right) dx$	84	1) $\int \left(3x^2 + \frac{5}{x^6} - \frac{3}{\sqrt[3]{x^2}}\right) dx$
	$2) \int (\ln x)^3 \frac{dx}{x}$		$2) \int \sqrt{\ln x} \cdot \frac{dx}{x}$
	$3) \int (2x+1)\sin 3x dx$		$3) \int (x-3)e^{-2x}dx$
	$4) \int \frac{5x+8}{x^2+2x+5} dx$		$4) \int \frac{3x+10}{x^2-8x+10} dx$
	$5) \int \sin^3 5x dx$		$5) \int \sin^2 x \cos^3 x dx$
85	1) $\int \left(4x^3 - \frac{2}{x^3} - \frac{5}{\sqrt[7]{x^2}}\right) dx$	86	$1) \int \left(5x^4 - \frac{4}{x^5} + \frac{9}{\sqrt[4]{x}}\right) dx$
	$2) \int \frac{\arctan x}{1+x^2} dx$		$2) \int \frac{x}{\sqrt{1-2x^2}} dx$
	$\int (x-1)e^{2x}dx$		$3) \int \sqrt{x} \ln 3x dx$
	4) $\int \frac{3x-2}{x^2+4x+8} dx$		$4) \int \frac{3x+7}{x^2+8x+17} dx$
	$\int \sin^4 3x dx$		$5) \int \cos^3 2x dx$

Продолжение таблицы 11

1	2	3	4
87	1) $\int \left(6x^5 - \frac{1}{x^2} - 8\sqrt[5]{x^3}\right) dx$	88	$1) \int \left(7x^6 - \frac{3}{x^4} + 3\sqrt{x}\right) dx$
	$2) \int \frac{\cos x}{\sqrt[3]{\sin x}} dx$		$2) \int \frac{x}{2x^4 + 5} dx$
	$\int (5x+1)\ln x dx$		$3) \int x^3 \ln x dx$
	4) $\int \frac{8x-3}{x^2+6x+10} dx$		4) $\int \frac{5x-2}{x^2-2x+5} dx$
	$\int \cos^2 x \sin^2 x dx$		$5) \int \cos^3 x \sin^3 x dx$
89	$1) \int \left(8x - \frac{5}{x^6} + 7\sqrt[6]{x}\right) dx$	90	$1) \int \left(4 - \frac{1}{x^3} - \frac{6}{\sqrt[5]{x^3}}\right) dx$
	$\begin{array}{c} 2) \int e^{-x^2} x dx \\ 3) \int x \cos 2x dx \end{array}$		$2) \int \frac{dx}{x \ln x}$
	4) $\int \frac{7x+3}{x^2-4x+5} dx$		3) $\int (2x+8)e^{-7x}dx$
	$\int \frac{3x^2 - 4x + 5}{\sin^3 x dx}$ $\int \frac{\sin^3 x dx}{\cos^2 x}$		$4) \int \frac{7x - 3}{x^2 + 6x + 13} dx$
	$\int \int \frac{1}{\cos^2 x}$		$5) \int \frac{\cos^3 x dx}{\sin^2 x}$

Задание 91-100

Требуется (табл. 12):

- 1) вычислить определенный интеграл;
- 2) вычислить определенный интеграл;
- 3) вычислить несобственный интеграл или установить его расходимость.

Таблица 12. Исходные данные для решения задач

Номер задания	Интегралы	Номер задания	Интегралы
1	2	3	4
91	1) $\int_{-1}^{9} x\sqrt{x^2 + 4} dx$ 2) $\int_{0}^{2} \ln(x^2 + 4) dx$ 3) $\int_{e}^{+\infty} \frac{dx}{x \ln^3 x}$	92	1) $\int_{-7}^{3} x \sqrt{x^2 + 5} dx$ 2) $\int_{-1}^{0} (2x + 3)e^{-2x} dx$ 3) $\int_{0}^{+\infty} x^2 e^{-x^3} dx$

Продолжение таблицы 12

1	2	3	4
93	$1) \int_{2}^{8} x \sqrt{x^2 + 1} dx$	94	$1) \int_{3}^{7} x \sqrt{x^2 + 2} dx$
	$\int_{-1}^{-2} 3x \ln(x+2) dx$		$2) \int_{0}^{\pi} x \cos \frac{x}{2} dx$
	$3) \int_0^2 \frac{x dx}{\sqrt{4 - x^2}}$		3) $\int_{0}^{2} \frac{dx}{(x-3)^{2}}$
95	1) $\int_{-4}^{6} x \sqrt{x^2 + 3} dx$	96	1) $\int_{-6}^{4} x \sqrt{x^2 + 6} dx$
	$2) \int_{1}^{2} x^{3} \ln x dx$		$2) \int_{1}^{2} x e^{-\frac{x}{2}} dx$
	$3) \int_{1}^{e} \frac{dx}{x\sqrt{\ln x}}$		$3) \int_{0}^{+\infty} x e^{-\frac{x^2}{2}} dx$
97	$1) \int_{-3}^{7} x \sqrt{x^2 + 7} dx$	98	$1) \int_{-7}^{3} x \sqrt{x^2 + 8} dx$
	$2) \int_{0}^{\frac{\pi}{4}} x \cos 2x dx$		$2) \int_{0}^{2} \frac{\ln x dx}{x^2}$
	$3) \int_{0}^{+\infty} \frac{xdx}{\sqrt[3]{x^2 + 1}}$		$3) \int_{2}^{10} \frac{dx}{\sqrt[3]{(x-2)^{x}}}$
99	1) $\int_{2}^{8} x \sqrt{x^2 + 9} dx$	100	$1) \int_{-1}^{9} x \sqrt{x^2 + 10} dx$
	$2) \int_{0}^{\frac{\pi}{4}} x \sin 2x dx$		2) $\int_{1}^{2} xe^{x} dx$ 3) $\int_{-1}^{7} \frac{dx}{\sqrt[3]{7-x}}$
	$3) \int_{2}^{4} \frac{dx}{x^{2} - 4}$		$3) \int_{-1}^{7} \frac{dx}{\sqrt[3]{7-x}}$

Задание 101-110

Вычислить площадь фигуры, ограниченной кривыми, заданными в прямоугольной декартовой системе координат, сделать чертеж (табл. 13).

Таблица 13. Исходные данные для решения задач

Номер задания	Уравнения линий	Номер задания	Уравнения линий
101	$y = \frac{1}{2}x^2 - x + 1$	102	$y = \frac{1}{2}x^2 + x + 2$
	$y = -\frac{1}{2}x^2 + 3x + 6$		$y = -\frac{1}{2}x^2 - 5x + 7$
103	$y = \frac{1}{3}x^2 - 3x + 2$	104	$y = 2x^2 + 6x - 3$
	2		$y = -x^2 + x + 5$
	$y = -\frac{2}{3}x^2 - 2x + 4$		
105	$y = 3x^2 - 5x - 1$	106	$y = x^2 - 3x - 1$
	$y = -x^2 + 2x + 1$		$y = -x^2 - 2x + 5$
107	$y = 2x^2 - 6x + 1$	108	$y = \frac{1}{2} x^2 + 2x + 4$
	$y = -x^2 + x - 1$		$y = \frac{1}{3}x^2 - 2x + 4$
			$y = -\frac{2}{3}x^2 - x + 2$
109	$y = x^2 - 5x - 3$	110	$y = x^2 - 2x - 5$
	$y = -3x^2 + 2x - 1$		$y = -x^2 - x + 1$

Задание 111-120

Вычислить объем тела, образованного вращением вокруг оси Ox фигуры, расположенной в первом квадранте и ограниченной заданными параболой, прямой и осью Ox (табл. 14). Сделать рисунок фигуры вращения.

Таблица 14. Исходные данные для решения задач

Номер задания	Уравнения линий	Номер задания	Уравнения линий
1	2	3	4
111	$y = 2x^2$ $y = -2x + 4$	112	$y = x^2$ $y = -x + 2$
	y = -2x + 4		y = -x + 2
113	$y = 3x^2$ $y = -x + 4$	114	$y = \frac{1}{4}x^2$
			y = -x + 3
115	$y = \frac{1}{2}x^2$	116	$y = \frac{1}{3}x^2$
	y = -3x + 8		y = -3x + 12

Продолжение таблицы 14

1	2	3	4
117	$y = 4x^2$	118	1 2
	y = -2x + 2		$y = \frac{1}{4}x^2$
	y = -2x + 2		4
			$v = -\frac{1}{r} + 2$
			$y = -\frac{1}{2}x + 2$
119	$y = 4x^2$	120	$y = x^2$
			•
	y = -2x + 6		y = -x + 3

Задание 121-130

Дана функция u(x,y). Проверить, удовлетворяет ли она заданному уравнению (табл. 15).

Таблица 15. Исходные данные для решения задачи

	,	
Номер задания	Функция	Уравнение
121	$u = \frac{y}{x}$	$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x dy} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 0$
122	$u = y\sqrt{\frac{y}{x}}$	$x^2 \frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0$
123	$u = x^y$	$y\frac{\partial^2 u}{\partial x \partial y} = (1 + y \ln x)\frac{\partial u}{\partial x}$
124	$u = \frac{xy}{x+y}$	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2u$
125	$u=e^{xy}$	$x^2 \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$
126	$u = \sin^2(x - 2y)$	$4\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$
127	$u = \ln\left(x^2 + (y+1)^2\right)$	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
128	$u = \frac{x^2 + y^2}{x - y}$	$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{x+y}{x-y}$
129	$u = \ln\frac{x}{y} + x^3 - y^3$	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3(x^3 - y^3)$
130	$u = \frac{2x + 3y}{x^2 + y^2}$	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + u = 0$

Задание 131-140

Исследовать функцию z = f(x, y) (табл. 16) на экстремум.

Таблица 16. Исходные данные для решения задачи

Номер задания	z = f(x, y)
131	$z = (x-1)^2 + 2y^2$
132	$z = 2xy - 2x^2 - 4y^2$
133	$z = x^2 + xy + y^2 + x - y + 1$
134	$z = x^2 + y^2 - xy + x + y$
135	z = xy(6 - x - y)
136	$z = x^3 + 8y^3 - 6xy + 5$
137	$z = 3x^3 + 3y^3 - 9xy + 10$
138	$z = (x-5)^2 + y^2 + 1$
139	z = 2xy - 4x - 2y
140	$z = 2xy - 3x^2 - 2y^2 + 10$

Задание 141-150

Вычислить интеграл (табл. 17).

Таблица 17. Исходные данные для решения задачи

Номер задания	Интеграл	Номер задания	Интеграл
141	$\int_{0}^{1} dx \int_{x}^{\sqrt{x}} (\sqrt{x} + 5) dy$	142	$\int_{1}^{4} dx \int_{0}^{x} (y+1) dy$
143	$\int_{0}^{1} dx \int_{x}^{\sqrt{x}} \sqrt{x} dy$	144	$\int_{0}^{1} dx \int_{x}^{2\sqrt{x}} (y^2 - 1) dy$
145	$\int_{1}^{4} dx \int_{0}^{x} (x^2 + y) dy$	146	$\int_{0}^{1} dx \int_{x}^{2\sqrt{x}} y dy$
147	$\int_{-1}^{2} dx \int_{0}^{x} (x - y) dy$	148	$\int_{0}^{3} dx \int_{-3x}^{x^{2}} x dy$
149	$\int_{1}^{2} dx \int_{0}^{x} (x^2 + 1) dy$	150	$\int_{1}^{2} dx \int_{0}^{x} (y+x) dy$

Задание 151-160

Вычислить объем тела, ограниченного указанными поверхностями (табл. 18). Данное тело и область интегрирования изобразить на чертеже.

The state of the period of the			
Номер задания	Уравнения поверхностей		
151	x = 0, $y = 0$, $z = 0$, $2x + 3y + z - 6 = 0$		
152	$z = 0, y = x^2, y + z = 2$		
153	$z = 0, z = y, y = 4 - x^2$		
154	$z = 0, z = 2y, y = 9 - x^2$		
155	$z = 0, y = \frac{1}{3}x^2, y + z = 3$		
156	$z = 0, x = y^2, x + z = 2$		
157	$z = 0, x = 4 - y^2, z = 2x$		
158	$z = 0, x = y^2, x + z = 3$		
159	$z = 0, x = 9 - y^2, z = 2x$		
160	$z = 0, x = \frac{1}{2}y^2, x + z = 2$		

Таблица 18. Исходные данные для решения задачи

Задание 161-170

Дан криволинейный интеграл и точки A(0; 1), B(3; 1), C(3; 10) (табл. 19).

Вычислить данный интеграл по трем различным путям l:

- 1) по ломаной ABC;
- по прямой AC;
- 3) по параболе $y = x^2 + 1$ от точки A до точки C .

Таблица 19. Исходные данные для решения задачи

Номер задания	Интеграл	Номер задания	Интеграл
161	$\int_{l} (2x-2y)dx - (x+y^2)dy$	162	$\int_{l} (y-x)dx + (x+y^2)dy$
163	$\int_{l} (x^2 - y) dx + (y - x) dy$	164	$\int_{l} (2y+x)dx + (2x-1)dy$
165	$\int_{l} (2x - 2y^2) dx - (x + y) dy$	166	$\int_{l} (y^2 + 1)dx + (1 + 2xy)dy$
167	$\int_{l} (x+y^2)dx + 2xydy$	168	$\int_{l} (x-1)dx + (y^2+2)dy$
169	$\int_{l} (x^2 + 2y)dx + (2x - y)dy$	170	$\int_{l} (x-2y)dx - (x+y^2)dy$

Задание 171-180

Даны комплексные числа z_1 , z_2 , z_3 (табл. 20).

Требуется:

- 1) найти $z_1 \cdot z_2$;
- 2) найти $\frac{z_1}{z_2}$;
- 3) записать в тригонометрической и показательной формах число z_3 .

Таблица 20. Исходные данные для решения задач

Номер задания	z_1	Z_2	Z_3
171	3 + 2i	4-5i	$\sqrt{3}+i$
172	4 + 5i	2-3i	$-\sqrt{3}+i$
173	3-2i	2 + 5i	$\sqrt{3}-i$
174	2 + 3i	4-3i	$2\sqrt{3}+2i$
175	4 + 5i	1-3i	$-2\sqrt{3}+2i$
176	2-5i	3 + 2i	$-2\sqrt{3}-2i$
177	5 + 2i	1 + 3i	$-\sqrt{3}-i$
178	3-4i	2 + 3i	$2\sqrt{3}-2i$
179	1 + 5i	3-2i	$-1+\sqrt{3}i$
180	2-3i	1+2i	$1-\sqrt{3}i$

7. ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ 3

Задание 181-190

Найти общее решение (общий интеграл) дифференциального уравнения первого порядка (табл. 21).

Таблица 21. Исходные данные для решения задачи

1 aominga 21.	исхооные ойнные оля решения заойчи
Номер задания	Уравнения
1	2
181	1) $y - xy = (1 + x^{2})y'$ 2) $xye^{\frac{x}{y}} + y^{2} = x^{2}y'e^{\frac{x}{y}}$ 3) $2xy' + y = 2x^{3}$
182	1) $x(1 + y^{2}) + y(1 - x^{2})y' = 0$ 2) $(3x^{2} - y^{2})y' - 2xy = 0$ 3) $y' - y = e^{x}$
183	1) $y' = (2y+1)\operatorname{ctg} x$ 2) $x \ln \frac{x}{y} dy - y dx = 0$ 3) $xy' - y = x^3$
184	1) $(1 + x^{2})y' = y(x - \sqrt{1 + x^{2}})$ 2) $xyy' = y^{2} + 8x^{2}$ 3) $xy' - y = -2 \ln x$
185	1) $(1+x^{2})y^{3} + (1-y^{2})x^{3}y' = 0$ 2) $y' = \frac{x-y}{x+y}$ 3) $y' - 2xy = 2xe^{x^{2}}$
186	1) $x(1 + y^{2}) + (1 + y^{3})y' = 0$ 2) $2x^{2}y' + x^{2} + y^{2} = 0$ 3) $xy' - 2y = 4x^{3}\cos^{2}x$
187	1) $y' \cos x = (y+1)\sin x$ 2) $xy' = y + \sqrt{x^2 - y^2}$ 3) $(1+x^2)y' - 2xy = (1+x^2)^2$
188	1) $(2+y)dx - (2-x)dy = 0$ 2) $4xyy' - y^2 - 3x^2 = 0$ 3) $x^2y' = 2xy + 3$

Продолжение таблицы 21

1	2
189	1) $(e^{2x} + 1)dy + ye^{2x}dx = 0$
	$2) \ y' = \frac{8x + 5y}{5x - 2y}$
	3) $xy' + y - x - 1 = 0$
	$1) y' \operatorname{tg} x - y = 0$
190	$2) x^2 y' + y^2 - 2xy = 0$
	$3) y' \cos^2 x + y = \operatorname{tg} x$

Задание № 191-200

Найти частное решение дифференциального уравнения второго порядка, допускающего понижение порядка, при указанных начальных условиях (табл. 22).

Таблица 22. Исходные данные для решения задачи

Номер задания	Уравнение	Начальные условия
191	$(y-2)y''=2(y')^2$	y(0)=3, y'(0)=1
192	y'y'' = 2y	y(0)=0, y'(0)=0
193	$y'' - e^y y' = 0$	y(0)=0, y'(0)=1
194	$x^3y'' = 4\ln x$	y(1) = 4, y'(1) = 0
195	$y'' + y' \operatorname{tg} x = \cos x$	$y\left(\frac{\pi}{2}\right) = 1, \ y'\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$
196	$xy'' = \ln x + 1$	y(1) = 0, y'(1) = 0
197	$xy'' - 2y' = 2x^4$	$y(1) = \frac{1}{5}, y'(1) = 4$
198	$y'' = \frac{x}{\sqrt{\left(1 - x^2\right)^3}}$	y(0)=1, y'(0)=2
199	$y'' - y' \operatorname{ctg} x = \sin x$	$y\left(\frac{\pi}{2}\right) = 1, \ y'\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$
200	$xy'' - y' - x^2 = 0$	$y(1) = \frac{4}{3}, y'(1) = 3$

Задание 201-210

Найти общее решение дифференциального уравнения второго порядка (табл. 23).

Таблица 23. Исходные данные для решения задачи

Номер задания	Уравнение
1	2
	1) $y'' + 2y' - 3y = 6x$
201	$2) y'' - 4y' + 4y = e^{2x}$
	$3) 4y'' + 9y = \sin\frac{3}{2}x$
	1) $y'' - 4y' = 4x^2 - 8x$
202	$2) y'' - 3y' - 4y = 3e^{-x}$
	3) $y'' + 4y = 2\sin 2x$
	1) $y'' + 2y' + 2y = x^2 + 1$
203	$2) y'' - 6y' + 9y = e^{3x}$
	$3) y'' + y = 4\sin x$
	1) $y'' - 4y' = 8x + 4$
204	$2) y'' - 4y' + 4y = 5e^{-x}$
	3) $y'' - 4y = 13\cos 3x$
	1) $y'' - 4y' = x^2 + x$
205	$2) y'' - 4y' + 4y = 2e^{-2x}$
	$3) y'' + 9y = 3\cos 3x$
	1) $y'' + 2y' + 2y = 3x^2 + x$
206	$2) y'' - 4y' + 4y = 3e^x$
	$3) y'' + 9y = \cos 3x$
	1) $y'' + 2y' + 2y = x + 2$
207	$2) y'' - 3y' + 2y = e^{2x}$
	3) $y'' - 4y = 4\sin 2x$
	1) $y'' + 2y' + 2y = x^2 - 1$
208	$2) y'' - 4y' + 4y = e^{2x}$
	3) $y'' - 4y = 5\sin 3x - 10\cos 3x$
	1) $y'' - 4y' = 12x^2$
209	$2) y'' - 4y' + 4y = 36e^{-4x}$
	3) $y'' + y' - 2y = \cos x - 3\sin x$

Продолжение таблицы 23

1	2
	1) $y'' - 3y' = 2 - 6x$
	$2) y'' - y' - 2y = 3e^{2x}$
	3) $y'' + 9y = \sin 3x + \cos 3x$

Задание 211-220

С помощью признака Даламбера или Коши исследовать на сходимость данные ряды (табл. 24).

Таблица 24. Исходные данные для решения задачи

	T	I	
Номер	Ряды	Номер	Ряды
задания		задания	ТИДЫ
211	1) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$ 2) $\sum_{n=1}^{\infty} \frac{n}{3^n}$	212	1) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ 2) $\sum_{n=1}^{\infty} \left(\frac{3}{5}\right)^n$
213	1) $\sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 2}$ 2) $\sum_{n=1}^{\infty} \frac{3^n}{n!}$	214	1) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt[3]{n}}$ 2) $\sum_{n=1}^{\infty} \left(\frac{4}{3}\right)^n$
215	1) $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{3}$ 2) $\sum_{n=1}^{\infty} \frac{2^{n}}{n+1}$	216	1) $\sum_{n=1}^{\infty} \frac{1}{4n+1}$ 2) $\sum_{n=1}^{\infty} \left(\frac{4}{5}\right)^n$ 1) $\sum_{n=1}^{\infty} \frac{1}{2n+3}$
217	1) $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^4$ 2) $\sum_{n=1}^{\infty} \frac{4^n}{n!}$	218	$2) \sum_{n=1}^{\infty} \frac{n+2}{2^n}$
219	1) $\sum_{n=1}^{\infty} \frac{1}{2n+5}$ 2) $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$	220	1) $\sum_{n=1}^{\infty} \frac{1}{3n+1}$ 2) $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$

Задание 221-230

Дан ряд (табл. 25). Требуется:

- 1) исследовать его на сходимость (абсолютную, условную) по признаку Лейбница;
- 2) вычислить приближенное значение суммы, взяв три первых члена ряда;
- 3) оценить допускаемую при этом погрешность.

<i>Ta6.</i>	лица 25.	Исходные	дағ	ные	для	реше	ния	задач	ıu

Номер задания	Ряд	Номер задания	Ряд
221	$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{n}{10^n}$	222	$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{n}{2^n}$
223	$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{n}{5^n}$	224	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n+1}{6^n}$
225	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n+5}{10^n}$	226	$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{2n+3}{5^n}$
227	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+2}{5^n}$	228	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{10^n}$
229	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n+2}{10^n}$	230	$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{4n+1}{5^n}$

Задание 231-240

Дан степенной ряд $\sum_{n=1}^{\infty} \frac{a^n x^n}{b^n \sqrt{n+1}}$ (табл. 26). При заданных значениях a и b написать первые три члена ряда, найти область сходимости ряда.

Таблица 26. Исходные данные для решения задач

Номер	a	h	Номер	a	h
задания	а	U	задания	а	υ
231	2	3	232	3	5
233	4	7	234	5	9
235	7	6	236	2	5
237	3	2	238	4	3
239	5	2	240	6	4

Задание 241-250

Решить задачу (табл. 27).

Таблица 27. Исходные данные для решения задач

Номер задания	Задача
241	Вероятность того, что одна газетная экспедиция доставит газеты вовремя, равна 0,95, а для второй эта вероятность равна 0,98. Найти вероятность того, что вовремя доставят газеты: а) только одна экспедиция; б) хотя бы одна экспедиция
242	Вероятность того, что при измерении некоторой физической величины будет допущена ошибка, при первом измерении равна 0,1, а при втором 0,15. Найти вероятность того, что в результате двух измерений ошибка будет допущена: а) только в одном случае; б) в обоих случаях измерение будет произведено без ошибок
243	Вероятность того, что первый цех выполнит заказ в срок, равна 0,95, второй цех — 0,8. Найти вероятность того, что: а) только один цех выполнит заказ в срок; б) хотя бы один цех не выполнит заказ в срок
244	Вероятность того, что при расчете будет допущена ошибка для первого студента, равна 0,01; для второго 0,02. Найти вероятность того, что при расчете: а) оба студента не допустят ошибку; б) не допустит ошибку хотя бы один студент
245	Отдел технического контроля проверяет партию из 20 изделий. Партия принимается, если среди наудачу отобранных 5 изделий будет не более одной нестандартной. Найти вероятность того, что партия будет принята, если в этой партии 4 нестандартных изделия
246	Вероятность того, что студент сдаст первый экзамен на отлично, равна 0,95, для второго экзамена эта вероятность равна 0,85. Найти вероятность того, что студент сдаст на отлично: а) только один экзамен; б) хотя бы один экзамен
247	Вероятность попадания в цель по удаляющейся мишени при первом выстреле равна 0,9, при втором 0,8, при третьем 0,7. Найти вероятность того, что при трех выстрелах будет: а) только одно попадание; б) хотя бы одно попадание
248	Вероятности бесперебойной работы для каждого из двух станков соответственно равны 0,95 и 0,8. Найти вероятность того, что за смену: а) произойдет остановка только одного станка; б) остановится хотя бы один станок
249	Вероятность того, что автобус из Москвы прибудет с опозданием, равна 0,05, из Ярославля — 0,07. Найти вероятность того, что в случайно выбранный день: а) оба автобуса приедут вовремя; б) опоздает только один автобус
250	Вероятности войти в сборную команду академии для каждого из трех студентов соответственно равны 0,9; 0,8; 0,7. Найти вероятность того, что в результате отборочных соревнований в сборную войдет: а) только один студент; б) хотя бы один студент

Задание 251-260

Дана вероятность p появления события A в каждом из n независимых испытаний. Найти вероятность того, что в этих испытаниях событие A появится не менее k_1 раз и не более k_2 раз (табл. 28).

Таблица 28. Исходные данные для решения задачи

Номер задания	n	p	k_1	k_2
251	360	0,8	280	300
252	490	0,6	320	350
253	640	0,9	500	540
254	225	0,2	50	60
255	810	0,4	340	400
256	250	0,7	150	180
257	300	0,3	110	130
258	625	0,8	480	500
259	100	0,5	60	80
260	256	0,9	200	220

Задание 261-270

Случайная величина X задана рядом распределения (табл. 29). Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X.

Таблица 29. Исходные данные для решения задачи

Номер задания	Закон распределения				
261	X	-3	1	2	
201	p	0,1	0,6	0,3	
262	X	1	3	4	
202	p	0,1	0,5	0,4	
263	X	-1	0	3	
203	p	0,3	0,2	0,5	
264	X	-1	2	4	
204	p	0,2 -3	0,4	0,4	
265	X	-3	-1	0	
203	p	0,3	0,4	0,3	
266	X	0,3 -2	1	2	
200	p	0,1	0,4	0,5	
267	X	-4	-1	0	
207	p	0,3	0,4	0,3	
268	X	15	13	10	
200	p	0,1 8	0,3 5	0,6	
269	X			3	
207	p	0,2 -5	0,4	0,4	
270	X		-1	3	
210	p	0,5	0,3	0,2	

Задание 271-280

Случайная величина X задана интегральной функцией распределения F(x) (табл. 30).

Найти:

- 1) дифференциальную функцию f(x) (плотность вероятности);
- 2) математическое ожидание M(X);
- 3) дисперсию D(X);
- 4) построить графики функций F(x) и f(x).

Таблица 30. Исходные данные для решения задачи

**	· ·					
Номер задания	Функция распределения					
1	2					
271	$F(x) = \begin{cases} 0 \text{ при } x \le 1, \\ \frac{1}{2} (x^2 - x) \text{ при } 1 < x \le 2, \\ 1 \text{ при } x > 2 \end{cases}$					
272	$F(x) = \begin{cases} 0 \text{ при } x \le 0, \\ 3x^2 + 2x \text{ при } 0 < x \le \frac{1}{3}, \\ 1 \text{ при } x > \frac{1}{3} \end{cases}$					
273	$F(x) = \begin{cases} 0 \text{ при } x \le 2, \\ \frac{x}{2} - 1 \text{ при } 2 < x \le 4, \\ 1 \text{ при } x > 4 \end{cases}$					
274	$F(x) = \begin{cases} 0 \text{ при } x \le 0, \\ x^3 \text{ при } 0 < x \le 1, \\ 1 \text{ при } x > 1 \end{cases}$					
275	$F(x) = \begin{cases} 0 \text{ при } x \le -1, \\ \frac{1}{4} (x+1)^2 \text{ при } -1 < x \le 1, \\ 1 \text{ при } x > 1 \end{cases}$					

Продолжение таблицы 30

1	2.				
276	$F(x) = \begin{cases} 0 \text{ при } x \le 0, \\ \frac{1}{5} (x^2 + 4x) \text{ при } 0 < x \le 1, \\ 1 \text{ при } x > 1 \end{cases}$				
277	$F(x) = \begin{cases} 0 \text{ при } x \le -2, \\ \frac{1}{9} (x+2)^2 \text{ при } -2 < x \le 1, \\ 1 \text{ при } x > 1 \end{cases}$				
278	$F(x) = \begin{cases} 0 \text{ при } x \le 0, \\ \frac{x^2 + x}{6} \text{ при } 0 < x \le 2, \\ 1 \text{ при } x > 2 \end{cases}$				
279	$F(x) = \begin{cases} 0 \text{ при } x \le 0, \\ \frac{1}{4}x^2 + \frac{3}{4}x \text{ при } 0 < x \le 1, \\ 1 \text{ при } x > 1 \end{cases}$				
280	$F(x) = \begin{cases} 0 \text{ при } x \le 0, \\ \frac{x^3}{27} \text{ при } 0 < x \le 3, \\ 1 \text{ при } x > 3 \end{cases}$				

Задание 281-290

Дана выборка значений нормально распределенного признака X (в первой строке таблицы 31 указаны значения признака x_i , во второй — соответствующие им частоты n_i).

Найти:

- 1) выборочную среднюю \bar{x} ;
- 2) выборочную дисперсию $D_{\scriptscriptstyle B}$;
- 3) исправленное выборочное среднее квадратическое отклонение s.

Таблица 31. Исходные данные для решения задачи

Номер задания	x_i, n_i	Значения								
281	x_{i}	65	70	75	80	85	90	95		
	n_i	3	7	10	40	20	12	8		
282	x_i	20	30	40	50	60	70	80		
	n_i	5	10	24	31	15	10	5		
283	x_i	12	22	32	42	52	62	72		
	n_i	4	16	25	40	7	5	3		
284	x_i	36	42	48	54	60	66	72		
	n_i	4	16	20	40	12	5	3		
285	x_i	12	18	24	30	36	42	48		
	n_i	2	16	12	50	15	3	2		
286	x_i	7	12	17	22	27	32	37		
	n_i	3	7	10	40	20	12	8		
287	x_i	9	15	21	27	33	39	45		
	n_i	4	10	25	30	16	10	5		
288	x_i	10	16	22	28	34	40	46		
	n_i	2	14	16	50	10	3	5		
289	x_i	18	21	24	27	30	33	36		
	n_i	4	16	10	30	15	20	5		
290	x_i	8	13	18	23	28	33	38		
	n_i	2	8	10	40	20	10	10		

8. РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ

Пример выполнения задания 1-10

Дана система линейных уравнений

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 16, \\ 5x_1 + x_2 + 2x_3 = 8, \\ 3x_1 - x_2 + x_3 = 10. \end{cases}$$

Решить систему тремя способами:

- 1) по формулам Крамера;
- 2) с помощью обратной матрицы;
- 3) методом Гаусса.

Решение

1. Решим систему по правилу Крамера:

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 16, \\ 5x_1 + x_2 + 2x_3 = 8, \\ 3x_1 - x_2 + x_3 = 10. \end{cases}$$

Составим определитель системы из коэффициентов при неизвестных и вычислим его по правилу треугольников:

$$\Delta = \begin{vmatrix} 1 & 2 & 4 \\ 5 & 1 & 2 \\ 3 & -1 & 1 \end{vmatrix} = 1 \cdot 1 \cdot 1 + 2 \cdot 2 \cdot 3 + 5 \cdot (-1) \cdot 4 - 4 \cdot 1 \cdot 3 - 2 \cdot 5 \cdot 1 - 2 \cdot (-1) \cdot 1 =$$

$$=1+12-20-12-10+2=-27$$
.

Составим определитель Δ_1 , заменив в определителе системы Δ первый столбец столбцом свободных членов, и вычислим его по правилу треугольников:

$$\Delta_{1} = \begin{vmatrix} 16 & 2 & 4 \\ 8 & 1 & 2 \\ 10 & -1 & 1 \end{vmatrix} = 16 \cdot 1 \cdot 1 + 2 \cdot 2 \cdot 10 + 8 \cdot 4 \cdot (-1) - 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 4 - 8 \cdot 2 \cdot 1 - 16 \cdot 2 \cdot (-1) = 10 \cdot 1 \cdot 1 - 10 \cdot 1 \cdot 1 - 10 \cdot 1$$

$$= 16 + 40 - 32 - 40 - 16 + 32 = 0.$$

Составим определитель Δ_2 , заменив в определителе системы Δ второй столбец столбцом свободных членов, и вычислим его, разложив по третьей строке:

$$\Delta_{2} = \begin{vmatrix} 1 & 16 & 4 \\ 5 & 8 & 2 \\ 3 & 10 & 1 \end{vmatrix} = 3 \cdot (-1)^{3+1} \begin{vmatrix} 16 & 4 \\ 8 & 2 \end{vmatrix} + 10 \cdot (-1)^{3+2} \begin{vmatrix} 1 & 4 \\ 5 & 2 \end{vmatrix} + 1 \cdot (-1)^{3+3} \begin{vmatrix} 1 & 16 \\ 5 & 8 \end{vmatrix} =$$

$$= 3 \cdot (16 \cdot 2 - 8 \cdot 4) - 10 \cdot (1 \cdot 2 - 4 \cdot 5) + (1 \cdot 8 - 5 \cdot 16) =$$

$$= 0 + 180 - 72 = 108.$$

Составим определитель Δ_3 , заменив в определителе системы Δ третий столбец столбцом свободных членов, и вычислим его, получив нули в первом столбце и разложив по нему:

$$\Delta_3 = \begin{vmatrix} 1 & 2 & 16 \\ 5 & 1 & 8 \\ 3 & -1 & 10 \end{vmatrix} =$$

умножим элементы первой строки на (-5) и прибавим к соответствующим элементам второй строки, затем умножим элементы первой строки на (-3) и прибавим к соответствующим элементам третьей строки:

$$= \begin{vmatrix} 1 & 2 & 16 \\ 0 & -9 & -72 \\ 0 & -7 & -38 \end{vmatrix} =$$

полученный определитель разложим по элементам первого столбца:

$$=1\cdot (-1)^{1+1}\begin{vmatrix} -9 & -72 \\ -7 & -38 \end{vmatrix} = -9\cdot (-38)-(-72)\cdot (-7) = 342-504 = -162.$$

Вычислим x_1 , x_2 и x_3 по правилу Крамера:

$$x_1 = \frac{\Delta_1}{\Delta} = \frac{0}{-27} = 0,$$

$$x_2 = \frac{\Delta_2}{\Delta} = \frac{108}{-27} = -4,$$

$$x_3 = \frac{\Delta_3}{\Delta} = \frac{-162}{-27} = 6.$$

Итак, (0, -4, 6) — решение системы. *Ответ*: (0, -4, 6).

2. Решим систему матричным методом

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 16, \\ 5x_1 + x_2 + 2x_3 = 8, \\ 3x_1 - x_2 + x_3 = 10 \end{cases}$$

Рассмотрим матрицы:

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 5 & 1 & 2 \\ 3 & -1 & 1 \end{pmatrix}$$
 — матрица системы, состоящая из коэффициентов

при неизвестных;

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 — матрица-столбец неизвестных;
$$B = \begin{pmatrix} 16 \\ 8 \\ 10 \end{pmatrix}$$
 — матрица-столбец свободных членов.

Тогда данная система в матричной форме примет вид:

$$AX = B$$
.

Матрица X находится по формуле

$$X = A^{-1}B,$$

где A^{-1} — матрица, обратная к матрице A.

Найдем обратную матрицу A^{-1} . Найдем определитель матрицы A:

$$\Delta = \begin{vmatrix} 1 & 2 & 4 \\ 5 & 1 & 2 \\ 3 & -1 & 1 \end{vmatrix} = -27$$
 (вычисление в пункте 1).

Так как $\Delta = -27 \neq 0$, то матрица A имеет обратную матрицу A^{-1} . Находим алгебраические дополнения:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot (-1) = 3,$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} 5 & 2 \\ 3 & 1 \end{vmatrix} = -(5 \cdot 1 - 2 \cdot 3) = 1,$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 5 & 1 \\ 3 & -1 \end{vmatrix} = 5 \cdot (-1) - 1 \cdot 3 = -8,$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 4 \\ -1 & 1 \end{vmatrix} = -(2 \cdot 1 - 4 \cdot (-1)) = -6,$$

$$A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 4 \cdot 3 = -11,$$

$$A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = -(1 \cdot (-1) - 2 \cdot 3) = 7,$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 2 & 4 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 4 \cdot 1 = 0,$$

$$A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 4 \\ 5 & 2 \end{vmatrix} = -(1 \cdot 2 - 4 \cdot 5) = 18,$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 5 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 5 = -9.$$

Составляем матрицу \widetilde{A} из алгебраических уравнений:

$$\widetilde{A} = \begin{pmatrix} 3 & 1 & -8 \\ -6 & -11 & 7 \\ 0 & 18 & -9 \end{pmatrix}.$$

Транспонируем полученную матрицу \widetilde{A} , получаем матрицу \overline{A} :

$$\overline{A} = \begin{pmatrix} 3 & -6 & 0 \\ 1 & -11 & 18 \\ -8 & 7 & -9 \end{pmatrix}.$$

Обратную матрицу A^{-1} находим по формуле

$$A^{-1} = \frac{1}{\Lambda} \cdot \overline{A} .$$

Получаем:

$$A^{-1} = \frac{1}{-27} \cdot \begin{pmatrix} 3 & -6 & 0 \\ 1 & -11 & 18 \\ -8 & 7 & -9 \end{pmatrix} = \begin{pmatrix} -\frac{1}{9} & \frac{2}{9} & 0 \\ -\frac{1}{27} & \frac{11}{27} & -\frac{2}{3} \\ \frac{8}{27} & -\frac{7}{27} & \frac{1}{3} \end{pmatrix}.$$

Найдем матрицу X:

$$X = A^{-1}B = \begin{pmatrix} -\frac{1}{9} & \frac{2}{9} & 0\\ -\frac{1}{27} & \frac{11}{27} & -\frac{2}{3}\\ \frac{8}{27} & -\frac{7}{27} & \frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} 16\\ 8\\ 10 \end{pmatrix} = \\ = -\frac{1}{27} \cdot \begin{pmatrix} 3 & -6 & 0\\ 1 & -11 & 18\\ -8 & 7 & -9 \end{pmatrix} \cdot \begin{pmatrix} 16\\ 8\\ 10 \end{pmatrix} = -\frac{1}{27} \cdot \begin{pmatrix} 3 \cdot 16 + (-6) \cdot 8 + 0 \cdot 10\\ 1 \cdot 16 + (-11) \cdot 8 + 18 \cdot 10\\ (-8) \cdot 16 + 7 \cdot 8 + (-9) \cdot 10 \end{pmatrix} = \\ = -\frac{1}{27} \cdot \begin{pmatrix} 0\\ 108\\ -162 \end{pmatrix} = \begin{pmatrix} 0\\ -4\\ 6 \end{pmatrix}.$$

Итак, (0, -4, 6) — решение системы.

Ответ: (0, -4, 6).

3. Решим систему методом Гаусса:

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 16, \\ 5x_1 + x_2 + 2x_3 = 8, \\ 3x_1 - x_2 + x_3 = 10. \end{cases}$$

Умножим первое уравнение на (-5) и прибавим ко второму уравнению; умножим первое уравнение на (-3) и прибавим к третьему. Получим:

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 16, \\ -9x_2 - 18x_3 = -72, \\ -7x_2 - 11x_3 = -38. \end{cases}$$

Умножим второе уравнение на $\left(-\frac{1}{9}\right)$. Получим:

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 16, \\ x_2 + 2x_3 = 8, \\ -7x_2 - 11x_3 = -38. \end{cases}$$

Умножим второе уравнение на 7 и прибавим к третьему. Получим:

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 16, \\ x_2 + 2x_3 = 8, \\ 3x_3 = 18. \end{cases}$$

Умножим третье уравнение на $\frac{1}{3}$. Получим:

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 16, \\ x_2 + 2x_3 = 8, \\ x_3 = 6. \end{cases}$$

Прямой ход метода Гаусса закончен. Получили систему ступенчатого вида. Начиная с третьего уравнения, обратным ходом находим неизвестные:

$$x_3 = 6$$
,
 $x_2 = 8 - 2x_3 = 8 - 2 \cdot 6 = 8 - 12 = -4$,
 $x_1 = 16 - 2x_2 - 4x_3 = 16 - 2 \cdot (-4) - 4 \cdot 6 = 16 + 8 - 24 = 0$.

Итак, (0, -4, 6) — решение системы.

Ответ: (0, -4, 6).

Пример выполнения задания 11-20

Даны координаты точек A(3;-1;2), B(4;-1;-1), C(2;0;2), D(1;2;4). Требуется:

- 1) найти координаты векторов \overline{AB} , \overline{AC} \overline{AD} и записать их разложение в системе орт;
 - 2) найти угол между векторами \overline{AB} и \overline{AC} ;
 - 3) найти площадь треугольника АВС;
 - 4) найти объём пирамиды АВСО.

Решение

1. Чтобы найти координаты вектора \overline{AB} , зная координаты его начала $A(x_1,y_1,z_1)$ и конца $B(x_2,y_2,z_2)$, надо из координат конца вектора вычесть соответствующие координаты его начала:

$$\overline{AB} = (x_2 - x_1; y_2 - y_1; z_2 - z_1).$$

Тогда

$$\overline{a} = \overline{AB} = (4-3; -1+1; -1-2) = (1; 0; -3),$$

 $\overline{b} = \overline{AC} = (2-3; 0+1; 2-2) = (-1; 1; 0),$
 $\overline{c} = \overline{AD} = (1-3; 2+1; 4-2) = (-2; 3; 2).$

Если вектор $\bar{a}=(a_x;a_y;a_z)$ задан своими координатами, то его можно записать в виде разложения по координатному базису \bar{i} , \bar{j} , \bar{k} следующим образом:

$$\overline{a} = a_x \overline{i} + a_y \overline{j} + a_z \overline{k}$$
.

Тогда разложение векторов $\overline{a}=\overline{AB}$, $\overline{b}=\overline{AC}$, $\overline{c}=\overline{AD}$ по базису \overline{i} , \overline{j} , \overline{k} имеет вил:

$$\bar{a} = \bar{i} + 3\bar{k},$$

$$\bar{b} = -\bar{i} + \bar{j},$$

$$\bar{c} = -2\bar{i} + 3\bar{j} + 2\bar{k}.$$

2. Косинус угла между векторами $\overline{a}=\overline{AB}$ и $\overline{b}=\overline{AC}$ найдем по формуле

$$\cos \angle BAC = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}| \cdot |\overline{b}|},$$

где $\bar{a}\cdot \bar{b}$ — скалярное произведение векторов \bar{a} и \bar{b} , $|\bar{a}|\cdot |\bar{b}|$ — произведение длин векторов \bar{a} и \bar{b} .

Скалярное произведение векторов $\bar{a}=\left(a_x;a_y;a_z\right)$ и $\bar{b}=\left(b_x;b_y;b_z\right)$ находится по формуле

$$\overline{a} \cdot \overline{b} = a_x b_x + a_y b_y + a_z b_z.$$

Тогда

$$\cos \angle BAC = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}.$$

Получим

$$\cos \angle BAC = \frac{1 \cdot (-1) + 0 \cdot 1 + (-3) \cdot 0}{\sqrt{1^2 + 0^2 + (-3)^2} \cdot \sqrt{(-1)^2 + 1^2 + 0^2}} = \frac{-1}{\sqrt{10} \cdot \sqrt{2}} = -\frac{1}{\sqrt{20}} = -\frac{\sqrt{20}}{20}.$$

3. Площадь треугольника АВС вычислим по формуле

$$S_{\Delta} = \frac{1}{2} \left| \overline{a} \times \overline{b} \right|,$$

где $\overline{a} \times \overline{b}$ — векторное произведение векторов $\overline{a} = \overline{AB}$ и $\overline{b} = \overline{AC}$.

Векторное произведение векторов $\overline{a}=\left(a_x;a_y;a_z\right)$ и $\overline{b}=\left(b_x;b_y;b_z\right)$ находится по формуле

$$\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}.$$

Найдем векторное произведение векторов $\bar{a} = \overline{AB} = (1; 0; -3)$ и $\bar{b} = \overline{AC} = (-1; 1; 0)$:

$$\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 0 & -3 \\ -1 & 1 & 0 \end{vmatrix} = \overline{i} \begin{vmatrix} 1 & -3 \\ -1 & 0 \end{vmatrix} - \overline{j} \begin{vmatrix} 1 & -3 \\ -1 & 0 \end{vmatrix} + \overline{k} \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 3\overline{i} + 3\overline{j} + \overline{k} .$$

Тогда

$$\left| \overline{a} \times \overline{b} \right| = \sqrt{3^2 + 3^2 + 1^2} = \sqrt{19}$$
 . $S_{\Delta ABC} = \frac{\sqrt{19}}{2}$ (кв. ед.).

4. Объем пирамиды АВСО находится по формуле

$$V_{ABCD} = \frac{1}{6} \left| \overline{AB} \ \overline{AC} \ \overline{AD} \right| = \frac{1}{6} \left| \overline{a} \ \overline{b} \ \overline{c} \right|,$$

где $\overline{a}\overline{b}\overline{c}$ — смешанное произведение векторов $\overline{a}=\overline{AB}$, $\overline{b}=\overline{AC}$ и $\overline{c}=\overline{AD}$.

Смешанное произведение векторов $\bar{a}=\left(a_x;a_y;a_z\right),\ \bar{b}=\left(b_x;b_y;b_z\right)$ и $\bar{c}=\left(c_x;c_y;c_z\right)$ находится по формуле

$$\overline{abc} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$

Найдем смешанное произведение векторов $\bar{a} = \overline{AB} = (1; 0; -3),$ $\bar{b} = \overline{AC} = (-1; 1; 0)$ и $\bar{c} = \overline{AD} = (-2; 3; 2):$

$$\overline{abc} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \begin{vmatrix} 1 & 0 & -3 \\ -1 & 1 & 0 \\ -2 & 3 & 2 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix} - 3 \cdot \begin{vmatrix} -1 & 1 \\ -2 & 3 \end{vmatrix} = 2 + 3 = 5.$$

Тогда

$$V_{ABCD} = \frac{5}{6}$$
 (куб. ед.).

Пример выполнения задания 21-30

Даны координаты вершин треугольника ABC: A(-2;4), B(6;-2), C(8;7).

Найти:

- 1) длину стороны AB;
- 2) уравнения сторон AB и AC и их угловые коэффициенты;
- 3) внутренний угол A;
- 4) уравнение высоты СД и ее длину;
- 5) уравнение и длину медианы AE;
- 6) уравнение окружности, для которой СО служит диаметром;
- 7) точку пересечения медиан;
- 8) уравнение прямой, проходящей через точку A, параллельно стороне CD.

Решение

1. Расстояние между точками $A(x_1; y_1)$ и $B(x_2; y_2)$ определяем по формуле

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
.

Подставляя в нее координаты точек A(-2;4) и B(6;-2), найдем длину стороны AB:

$$AB = \sqrt{(6-(-2))^2 + (-2-4)^2} = \sqrt{8^2 + (-6)^2} = \sqrt{100} = 10.$$

2. Уравнение прямой, проходящей через две данные точки $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$, имеет вид:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}.$$

 $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}\,.$ Подставив в него координаты точек $\mathit{A}(\!-2;4)$ и $\mathit{B}(6;-2)$, получим уравнение прямой AB:

$$\frac{y-4}{-2-4} = \frac{x-(-2)}{6-(-2)},$$

$$\frac{y-4}{-6} = \frac{x+2}{8},$$

$$8(y-4) = -6(x+2),$$

$$4(y-4) - 3(x+2),$$

$$4y-16 = -3x-6,$$

$$3x+4y-10 = 0.$$

Для нахождения углового коэффициента $k_{{\scriptscriptstyle A}{\scriptscriptstyle B}}$ прямой ${{A}{B}}$ разрешим уравнение этой прямой относительно у, то есть запишем в виде:

$$y = kx + b$$
,

где k — угловой коэффициент:

$$3x + 4y - 10 = 0,$$

$$4y = -3x + 10,$$

$$y = -\frac{3}{4}x + \frac{5}{2}.$$

Отсюда определяем угловой коэффициент прямой AB:

$$k_{AB} = -\frac{3}{4}.$$

Аналогично по двум точкам A(-2;4) и C(8;7) составим уравнение прямой AC:

$$\frac{y-4}{7-4} = \frac{x-(-2)}{8-(-2)},$$

$$\frac{y-4}{3} = \frac{x+2}{10},$$

$$10(y-4) = 3(x+2),$$

$$10y-40 = 3x+6,$$

$$3x-10y+46 = 0.$$

Найдем угловой коэффициент k_{AC} прямой AC:

$$10y = 3x + 46,$$
$$y = \frac{3}{10}x + \frac{23}{5},$$

$$k_{AC} = \frac{3}{10}$$
.

3. Угол ϕ между двумя прямыми, угловые коэффициенты которых соответственно равны k_1 и k_2 , находится по формуле

$$tg \, \varphi = \frac{k_2 - k_1}{1 + k_1 k_2}.$$

Искомый внутренний угол A образован прямыми AB и AC, угловые коэффициенты которых $k_{AB}=-\frac{3}{4},\ k_{AC}=\frac{3}{10}.$ Отмечая на рисунке 1 треугольника ABC в системе координат направление угла A против хода часовой стрелки, определяем порядок прямых: AB — первая, AC — вторая. Следовательно $k_1=k_{AB}=-\frac{3}{4},\ k_2=k_{AC}=\frac{3}{10}.$ Подставляем угловые коэффициенты в формулу угла между прямыми:

$$\operatorname{tg} A = \frac{\frac{3}{10} - \left(-\frac{3}{4}\right)}{1 + \left(-\frac{3}{4}\right) \cdot \frac{3}{10}} = \frac{\frac{6+15}{20}}{1 - \frac{9}{40}} = \frac{\frac{21}{20}}{\frac{31}{40}} = \frac{21 \cdot 40}{20 \cdot 31} = \frac{42}{31}.$$

Тогда

$$\angle A = \operatorname{arctg} \frac{42}{31}$$
.

4. Высота CD перпендикулярна стороне AB, поэтому угловые коэффициенты этих прямых обратны по величине и противоположны по знаку, то есть

$$k_{CD} = -\frac{1}{k_{AB}} = -\frac{1}{-\frac{3}{A}} = \frac{4}{3}.$$

Уравнение прямой, проходящей через точку $M_1(x_1; y_1)$ в заданном угловым коэффициентом k направлении, имеет вид

$$y - y_1 = k(x - x_1).$$

Для составления уравнения высоты CD, подставим в эту формулу координаты точки C(8;7) и угловой коэффициент $k_{CD} = \frac{4}{3}$:

$$y-7 = \frac{4}{3}(x-8),$$

$$3(y-7) = 4(x-8),$$

$$3y-21 = 4x-32,$$

$$4x-3y-11 = 0.$$

Найдем длину высоты CD, то есть расстояние от точки C до прямой AB. Расстояние от точки $M_0\big(x_0;y_0\big)$ до прямой Ax+By+C=0 находится по формуле

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

Подставим в нее координаты точки C(8;7) и коэффициенты из уравнения прямой $AB \ 3x + 4y - 10 = 0$:

$$CD = \frac{\left|3 \cdot 8 + 4 \cdot 7 - 10\right|}{\sqrt{3^2 + 4^2}} = \frac{42}{\sqrt{25}} = \frac{42}{5} = 8.4$$
.

5. Точка E — середина отрезка BC. Для определения ее координат применим формулы деления отрезка пополам:

$$x = \frac{x_1 + x_2}{2}, \quad y = \frac{y_1 + y_2}{2}.$$

Подставляем в них координаты точек B(6; -2) и C(8; 7):

$$x_E = \frac{6+8}{2} = 7$$
, $y_E = \frac{-2+7}{2} = \frac{5}{2}$.

To есть $E\left(7; \frac{5}{2}\right)$.

Найдем длину медианы AE, то есть расстояние между точками A(-2;4) и $E\left(7;\frac{5}{2}\right)$:

$$AE = \sqrt{(7 - (-2))^2 + \left(\frac{5}{2} - 4\right)^2} = \sqrt{9^2 + \left(-\frac{3}{2}\right)^2} = \sqrt{81 + \frac{9}{4}} = \sqrt{\frac{333}{4}} = \frac{3\sqrt{37}}{2}.$$

6. Точка D — точка пересечения прямых AB и CD. Чтобы найти ее координаты, решим систему уравнений этих прямых:

$$\begin{cases} 3x + 4y - 10 = 0, \\ 4x - 3y - 11 = 0. \end{cases}$$

Применим правило Крамера:

$$\begin{cases} 3x + 4y = 10, \\ 4x - 3y = 11; \end{cases}$$

$$\Delta = \begin{vmatrix} 3 & 4 \\ 4 & -3 \end{vmatrix} = 3 \cdot (-3) - 4 \cdot 4 = -9 - 16 = -25,$$

$$\Delta_x = \begin{vmatrix} 10 & 4 \\ 11 & -3 \end{vmatrix} = 10 \cdot (-3) - 4 \cdot 11 = -30 - 44 = -74,$$

$$\Delta_{y} = \begin{vmatrix} 3 & 10 \\ 4 & 11 \end{vmatrix} = 3 \cdot 11 - 10 \cdot 4 = 33 - 40 = -7,$$

$$x = \frac{\Delta_{x}}{\Delta} = \frac{74}{25}, \quad y = \frac{\Delta_{y}}{\Delta} = \frac{7}{25}.$$

Итак, $D\left(\frac{74}{25}; \frac{7}{25}\right)$.

Найдем координаты центра окружности, то есть середину отрезка CD, где C(8;7), $D\left(\frac{74}{25};\frac{7}{25}\right)$:

$$x = \frac{8 + \frac{74}{25}}{2} = \frac{274}{50} = \frac{137}{25},$$
$$y = \frac{7 + \frac{7}{25}}{2} = \frac{182}{50} = \frac{91}{25}.$$

Итак, $M\left(\frac{137}{25}, \frac{91}{25}\right)$ — центр окружности.

Радиус окружности R равен половине длины отрезка CD:

$$R = \frac{CD}{2} = \frac{42}{10} = \frac{21}{5}$$
.

Уравнение окружности имеет вид:

$$(x-a)^2 + (y-b)^2 = R^2$$

где (a;b) — координаты центра окружности; R — ее радиус. Подставив в него координаты точки $M\left(\frac{137}{25};\frac{91}{25}\right)$ и $R=\frac{21}{5}$, получим уравнение окружности, для которой CD является диаметром:

$$\left(x - \frac{137}{25}\right)^2 + \left(y - \frac{91}{25}\right)^2 = \left(\frac{21}{5}\right)^2,$$
$$\left(x - \frac{137}{25}\right)^2 + \left(y - \frac{91}{25}\right)^2 = \frac{441}{25}.$$

7. Точка пересечения медиан делит каждую медиану в отношении 2:1, начиная от вершины. Найдем координаты точки N, делящей медиану AE в отношении $\lambda = \frac{AN}{NE} = \frac{2}{1} = 2$. Используем формулы деления отрезка в данном отношении:

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \qquad y = \frac{y_1 + \lambda y_2}{1 + \lambda}.$$

Подставим в них координаты точек A(-2;4), $E(7;\frac{5}{2})$ и $\lambda = 2$:

$$x_N = \frac{-2+2\cdot7}{1+2} = 4$$
, $y_N = \frac{4+2\cdot\frac{5}{2}}{1+2} = 3$.

Итак, N(4;3) — точка пересечения медиан.

8. Составим уравнение прямой l, проходящей через точку A, параллельно стороне CD. Из условия параллельности прямых l и CD следует, что их угловые коэффициенты равны, то есть $k_l = k_{CD} = \frac{4}{3}$. Подставляя в формулу $y - y_1 = k(x - x_1)$ координаты точки A(-2;4) и $k_l = \frac{4}{3}$, получим уравнение прямой l:

$$y-4 = \frac{4}{3}(x-(-2)),$$

$$3y-12 = 4x+8,$$

$$4x-3y+20 = 0.$$

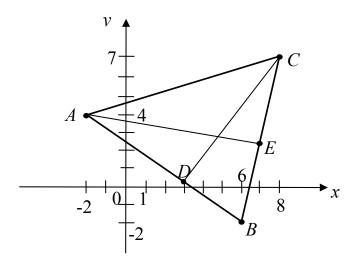


Рис. 1. Треугольник АВС

Пример выполнения задания 31-40

- 1. Дано уравнение параболы $y^2 = 4x$. Требуется найти координаты фокуса, уравнение директрисы и построить параболу.
- 2. Дано уравнение эллипса $4x^2 + 9y^2 = 36$. Требуется найти координаты фокусов, эксцентриситет и построить эллипс.
- 3. Даны действительная полуось $a = 2\sqrt{3}$ и эксцентриситет $\varepsilon = \sqrt{3}$ гиперболы. Требуется составить каноническое уравнение гиперболы, найти координаты фокусов, уравнения асимптот и построить гиперболу.

Решение

1. $y^2 = 4x$ — уравнение параболы, с вершиной в начале координат, симметричной относительно оси Ox, с ветвями, идущими вправо. $y^2 = 2px$ — общий вид уравнения такой параболы, где p — расстояние между фокусом и директрисой (рис. 2).

Из уравнения находим: 2p = 4, откуда p = 2, $\frac{p}{2} = 1$.

Директрисой параболы $y^2 = 2px$ является прямая, параллельная оси Oy, с уравнением $x = -\frac{p}{2}$, а фокус имеет координаты $F\left(\frac{p}{2};0\right)$.

Таким образом, для данной параболы директрисой служит прямая x = -1, а точка F(1; 0) — фокусом.

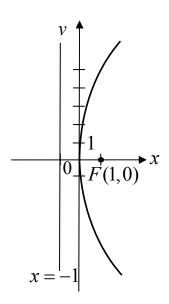


Рис. 2. Парабола

2. Приведем уравнение эллипса $4x^2 + 9y^2 = 36$ к каноническому виду

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Для этого обе части равенства разделим на 36 и выполним сокращения:

$$\frac{4x^2}{36} + \frac{9y^2}{36} = 1$$

 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ — каноническое уравнение эллипса.

Так как $a^2 = 9$, то a = 3 — большая полуось, $b^2 = 4$, b = 2 — малая полуось.

$$A_1(-3;0)$$
, $A_2(3;0)$, $B_1(0;-2)$, $B_2(0;2)$ — вершины эллипса.

Найдем с — расстояние от центра эллипса до каждого фокуса по формуле связи $c^2=a^2-b^2$, получим $c^2=9-4=5$, $c=\sqrt{5}$. Тогда $F_1\left(-\sqrt{5};0\right)$, $F_2\left(\sqrt{5};0\right)$ — фокусы эллипса (рис. 3).

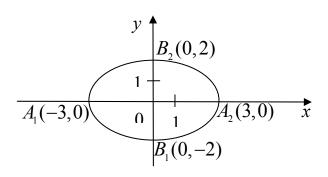


Рис. 3. Эллипс

Эксцентриситет вычислим по формуле $\varepsilon = \frac{c}{a}$, получим $\varepsilon = \frac{\sqrt{5}}{3}$.

3. Так как действительная полуось гиперболы $a=2\sqrt{3}$, то $A_1\left(-2\sqrt{3};0\right)$, $A_2\left(2\sqrt{3};0\right)$ — вершины гиперболы.

Из формулы для нахождения эксцентриситета гиперболы $\varepsilon = \frac{c}{a}$ найдем значение c — расстояние от центра гиперболы до каждого фокуса:

$$c = \varepsilon a = \sqrt{3} \cdot 2\sqrt{3} = 6.$$

Тогда $F_1(-6;0)$, $F_2(6;0)$ — фокусы гиперболы.

Из формулы связи $c^2 = a^2 + b^2$ найдем мнимую полуось b:

$$b^{2} = c^{2} - a^{2} = 6^{2} - (2\sqrt{3})^{2} = 36 - 12 = 24,$$

 $b = \sqrt{24} = 2\sqrt{6}.$

Составим каноническое уравнение гиперболы, которое имеет вид:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Получим

$$\frac{x^2}{12} - \frac{y^2}{24} = 1$$
.

Уравнения асимптот гиперболы:

$$y = \pm \frac{b}{a} x.$$

Подставив $a=2\sqrt{3}$, и $b=2\sqrt{6}$, получим:

$$y = \pm \frac{2\sqrt{6}}{2\sqrt{3}}x.$$

После преобразований имеем уравнения асимптот данной гиперболы (рис. 4):

$$y = \pm \sqrt{2}x.$$

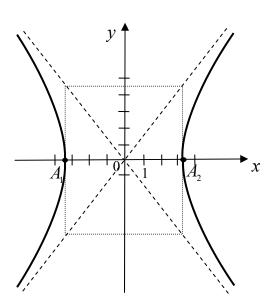


Рис. 4. Гипербола

Пример выполнения задания 41-50

Даны координаты точек A(4;1;-5), B(-2;3;-4), C(-2;1;3), D(0;-1;2).

Требуется:

- 1) написать уравнение плоскости *АВС*;
- 2) написать уравнение плоскости, проходящей через точку D параллельно плоскости ABC;
- 3) написать канонические и параметрические уравнения прямой АВ;
- 4) написать канонические уравнения прямой, проходящей через точку D перпендикулярно плоскости ABC;
- 5) найти расстояние от точки D до плоскости ABC.

Решение

1. Уравнение плоскости, проходящей через три точки $A(x_1; y_1; z_1)$, $B(x_2; y_2; z_2)$, $C(x_3; y_3; z_3)$, имеет вид:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Подставим в него координаты точек A(4;1;-5), B(-2;3;-4), C(-2;1;3):

$$\begin{vmatrix} x-4 & y-1 & z+5 \\ -2-4 & 3-1 & -4+5 \\ -2-4 & 1-1 & 3+5 \end{vmatrix} = 0,$$

$$\begin{vmatrix} x-4 & y-1 & z+5 \\ -6 & 2 & 1 \\ -6 & 0 & 8 \end{vmatrix} = 0,$$

$$(x-4) \cdot 2 \cdot 8 + (y-1) \cdot 1 \cdot (-6) + (z+5) \cdot (-6) \cdot 0 - (z+5) \cdot 2 \cdot (-6) - (x-4) \cdot 1 \cdot 0 - (y-1) \cdot (-6) \cdot 8 = 0,$$

$$16x - 64 - 6y + 6 + 12z + 60 + 48y - 48 = 0,$$

$$16x + 42y + 12z + 46 = 0,$$

$$8x + 21y + 6z + 23 = 0.$$

Таким образом, 8x + 21y + 6z + 23 = 0 — уравнение плоскости ABC.

2. Для составления уравнения плоскости α , проходящей через точку D параллельно плоскости ABC, найдем координаты ее нормального вектора, в качестве которого можно взять нормальный вектор плоскости ABC в силу их параллельности.

Если общее уравнение плоскости имеет вид Ax + By + Cz + D = 0, то ее нормальный вектор имеет координаты $\vec{n} = (A; B; C)$.

Для плоскости ABC с уравнением 8x + 21y + 6z + 23 = 0 нормальным вектором является вектор $\vec{n} = (8; 21; 6)$. Он же служит и нормальным вектором для плоскости α .

Если плоскость проходит через точку $M(x_1; y_1; z_1)$ перпендикулярно но нормальному вектору $\vec{n} = (A; B; C)$, то ее уравнение имеет вид:

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
.

Подставим в него координаты точки D(0; -1; 2) и нормального вектора $\vec{n} = (8; 21; 6)$:

$$8(x-0)+21(y-(-1))+6(z-2)=0$$
,

$$8x + 21y + 21 + 6z - 12 = 0,$$

$$8x + 21y + 6z + 9 = 0.$$

Таким образом, 8x + 21y + 6z + 9 = 0 — уравнение плоскости α , проходящей через точку D параллельно плоскости ABC.

3. Канонические уравнения прямой, проходящей через две данные точки $A(x_1; y_1; z_1)$, $B(x_2; y_2; z_2)$, имеют вид:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}.$$

Подставив в них координаты точек A(4;1;-5) и B(-2;3;-4), получим канонические уравнения прямой AB:

$$\frac{x-4}{-2-4} = \frac{y-1}{3-1} = \frac{z-(-5)}{-4-(-5)},$$
$$\frac{x-4}{-6} = \frac{y-1}{2} = \frac{z+5}{1}.$$

От канонических уравнений прямой AB, введя параметр t, перейдем к ее параметрическим уравнениям:

$$\frac{x-4}{-6} = \frac{y-1}{2} = \frac{z+5}{1} = t,$$

$$\begin{cases} \frac{x-4}{-6} = t, \\ \frac{y-1}{2} = t, \\ \frac{z+5}{1} = t; \end{cases}$$

$$\begin{cases} x = -6t + 4, \\ y = 2t + 1, \\ z = t - 5. \end{cases}$$

4. Составим канонические уравнения прямой l, проходящей через точку D перпендикулярно плоскости ABC. В качестве направляющего вектора \vec{s} прямой l можно взять нормальный вектор перпендикулярной ей плоскости ABC, то есть $\vec{s} = \vec{n} = (8; 21; 6)$.

Если прямая проходит через точку $M(x_1; y_1; z_1)$ параллельно направляющему вектору $\vec{s} = (m; n; p)$, то ее канонические уравнения имеют вид:

$$\frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p}.$$

Подставив в них координаты точки D(0;-1;2) и направляющего вектора $\vec{s}=(8;21;6)$, получим канонические уравнения прямой l, проходящей через точку D перпендикулярно плоскости ABC:

$$\frac{x-0}{8} = \frac{y-(-1)}{21} = \frac{z-2}{6},$$
$$\frac{x}{8} = \frac{y+1}{21} = \frac{z-2}{6}.$$

5. Расстояние от точки $M_0(x_0; y_0; z_0)$ до плоскости с уравнением Ax + By + Cz + D = 0 находим по формуле

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Подставим в нее координаты точки D(0;-1;2) и коэффициенты из уравнения плоскости ABC 8x + 21y + 6z + 23 = 0:

$$d = \frac{\left|8 \cdot 0 + 21 \cdot (-1) + 6 \cdot 2 + 23\right|}{\sqrt{8^2 + 21^2 + 6^2}} = \frac{14}{\sqrt{541}} = \frac{14\sqrt{541}}{541} \approx 0.6.$$

Таким образом, расстояние от точки D до плоскости ABC равно

$$d = \frac{14\sqrt{541}}{541}.$$

Пример выполнения задания 51-60

Найти пределы функций:

1)
$$\lim_{x\to 2} \frac{2x^2 + x - 10}{x^2 + x - 6}$$
;

2)
$$\lim_{x\to\infty}\frac{4x^2-3x+1}{2x^2+x-5}$$
;

3)
$$\lim_{x\to 2} \frac{\sqrt{3x-2}-2}{x-2}$$
;

4)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
;

$$5) \lim_{x\to\infty} \left(1+\frac{6}{x}\right)^{5x}.$$

Решение

1. Непосредственная подстановка вместо x его предельного значения приводит к неопределенности вида $\left(\frac{0}{0}\right)$. Чтобы раскрыть неопределенность вида $\left(\frac{0}{0}\right)$, надо и в числителе, и в знаменателе дроби выделить множитель (x-a) при $x{\to}a$ и сократить дробь на него.

Разложив числитель и знаменатель на множители, получим:

$$\lim_{x \to 2} \frac{2x^2 + x - 10}{x^2 + x - 6} = \lim_{x \to 2} \frac{(2x + 5)(x - 2)}{(x - 2)(x + 3)} = \lim_{x \to 2} \frac{2x + 5}{x + 3} = \frac{9}{5}.$$

(При разложении квадратного трехчлена на множители используйте формулу $ax^2 + bx + c = a(x - x_1)(x - x_2)$, где x_1 , x_2 — корни квадратного трехчлена).

2. Непосредственная подстановка вместо x его предельного значения приводит к неопределенности вида $\left(\frac{\infty}{\infty}\right)$. Чтобы раскрыть неопределенность вида $\left(\frac{\infty}{\infty}\right)$, заданную отношением двух многочленов, надо числитель и знаменатель дроби разделить на x в наивысшей степени. Разделим числитель и знаменатель данной дроби на x^2 и применим основные теоремы о пределах и свойства бесконечно малых величин, получим:

$$\lim_{x \to \infty} \frac{4x^2 - 3x + 1}{2x^2 + x - 5} = \lim_{x \to \infty} \frac{4 - \frac{3}{x} + \frac{1}{x^2}}{2 + \frac{1}{x} - \frac{5}{x^2}} = 2.$$

3. Непосредственная подстановка вместо x его предельного значения приводит к неопределенности вида $\left(\frac{0}{0}\right)$:

$$\lim_{x \to 2} \frac{\sqrt{3x - 2} - 2}{x - 2} = \left(\frac{0}{0}\right) =$$

Умножим числитель и знаменатель дроби на множитель, сопряженный числителю, то есть на $\left(\sqrt{3x-2}+2\right)$, получим:

$$= \lim_{x \to 2} \frac{\left(\sqrt{3x - 2} - 2\right)\left(\sqrt{3x - 2} + 2\right)}{\left(x - 2\right)\left(\sqrt{3x - 2} + 2\right)} = \lim_{x \to 2} \frac{3x - 2 - 4}{\left(x - 2\right)\left(\sqrt{3x - 2} + 2\right)} = \lim_{x \to 2} \frac{3\left(x - 2\right)}{\left(x - 2\right)\left(\sqrt{3x - 2} + 2\right)} = \lim_{x \to 2} \frac{3}{\sqrt{3x - 2} + 2} = \frac{3}{4}.$$

4. Применим первый замечательный предел:

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

и формулу тригонометрии

$$1-\cos\alpha=2\sin^2\frac{\alpha}{2}.$$

Получим:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = 2\lim_{x \to 0} \frac{\sin \frac{x}{2} \cdot \sin \frac{x}{2}}{\frac{x}{2} \cdot \frac{x}{2} \cdot 4} =$$

$$= 2 \cdot \frac{1}{4} \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} \cdot \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} = \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2}.$$

5. Применим второй замечательный предел

$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e.$$

Получим:

$$\lim_{x \to \infty} \left(1 + \frac{6}{x} \right)^{5x} = \lim_{x \to \infty} \left(\left(1 + \frac{6}{x} \right)^{\frac{x}{6}} \right)^{\frac{6}{x} \cdot 5x} = \lim_{x \to \infty} \left(\left(1 + \frac{6}{x} \right)^{\frac{x}{6}} \right)^{30} = e^{30}.$$

Пример выполнения задания 61-70

Найти производные функций:

1)
$$y = \left(x^4 - \frac{2}{x^3} + \sqrt[3]{x^2} - 6\right)^3$$
;

$$2) y = \frac{\cos\frac{x}{4}}{x^2};$$

3)
$$y = e^{ctgx} \arcsin \sqrt{x}$$
;

4)
$$y = 3^{\cos^2 x} + \arctan 5x$$
;

5)
$$x^2 + y^2 - 2x + 6y - 15 = 0$$
;

$$6) \begin{cases} x = \ln t, \\ y = t^3. \end{cases}$$

Решение

1.
$$y = \left(x^4 - \frac{2}{x^3} + \sqrt[3]{x^2} - 6\right)^3$$
 — сложная функция.

Применим формулы дифференцирования:

$$(u^3)' = 3u^2u', (x^n)' = nx^{n-1},$$

а также формулы

$$\frac{1}{x^n} = x^{-n}, \ \sqrt[n]{x^m} = x^{\frac{m}{n}}.$$

Имеем

$$y' = 3\left(x^{4} - \frac{2}{x^{3}} + \sqrt[3]{x^{2}} - 6\right)^{2} \left(x^{4} - \frac{2}{x^{3}} + \sqrt[3]{x^{2}} - 6\right)' = .$$

$$= 3\left(x^{4} - \frac{2}{x^{3}} + \sqrt[3]{x^{2}} - 6\right)^{2} \left(x^{4} - 2x^{-3} + x^{\frac{2}{3}} - 6\right)' = .$$

$$= 3\left(x^{4} - \frac{2}{x^{3}} + \sqrt[3]{x^{2}} - 6\right)^{2} \left(4x^{3} + 6x^{-4} + \frac{2}{3}x^{-\frac{1}{3}}\right) = .$$

$$= 3\left(x^{4} - \frac{2}{x^{3}} + \sqrt[3]{x^{2}} - 6\right)^{2} \left(4x^{3} + \frac{6}{x^{4}} + \frac{2}{3\sqrt[3]{x}}\right).$$

2. Для дифференцирования функции $y = \frac{\cos \frac{x}{4}}{x^2}$ применим правило производной частного:

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Получим

$$y' = \frac{\left(\cos\frac{x}{4}\right)'x^2 - \cos\frac{x}{4}(x^2)'}{\left(x^2\right)^2} = \frac{-\sin\frac{x}{4}\left(\frac{1}{4}x\right)' - \cos\frac{x}{4} \cdot 2x}{x^4} = \frac{-\frac{1}{4}\sin\frac{x}{4} - 2x\cos\frac{x}{4}}{x^4}.$$

3. Для дифференцирования функции $y = e^{ctgx} \arcsin \sqrt{x}$ применим правило производной произведения:

$$(uv)' = u'v + uv'.$$

Получим

$$y' = \left(e^{\operatorname{ctg} x}\right)' \arcsin \sqrt{x} + e^{\operatorname{ctg} x} \left(\arcsin \sqrt{x}\right)' =$$

$$= e^{\operatorname{ctg} x} \left(\operatorname{ctg} x\right)' \arcsin \sqrt{x} + e^{\operatorname{ctg} x} \frac{1}{\sqrt{1 - \left(\sqrt{x}\right)^2}} \left(\sqrt{x}\right)' =$$

$$= e^{\operatorname{ctg} x} \left(-\frac{1}{\sin^2 x}\right) \arcsin \sqrt{x} + e^{\operatorname{ctg} x} \frac{1}{\sqrt{1 - x}} \frac{1}{2\sqrt{x}} =$$

$$= e^{\operatorname{ctg} x} \left(-\frac{\arcsin \sqrt{x}}{\sin^2 x} + \frac{1}{2\sqrt{x(1 - x)}}\right) =$$

$$= e^{\operatorname{ctg} x} \left(\frac{1}{2\sqrt{x - x^2}} - \frac{\arcsin \sqrt{x}}{\sin^2 x}\right).$$

4. Для дифференцирования функции $y = 3^{\cos^2 x} + \arctan 5x$ применяем правило дифференцирования сложной функции, получаем:

$$y' = 3^{\cos^2 x} \ln 3 (\cos^2 x)' + \frac{1}{1 + (5x)^2} (5x)' =$$

$$= 3^{\cos^2 x} \ln 3 \cdot 2 \cos x (\cos x)' + \frac{1}{1 + 25x^2} 5 =$$

$$= 3^{\cos^2 x} \ln 3 \cdot 2 \cos x (-\sin x) + \frac{5}{1 + 25x^2} =$$

$$= -3^{\cos^2 x} \ln 3 \sin 2x + \frac{5}{1 + 25x^2}.$$

5. $x^2 + y^2 - 2x + 6y - 15 = 0$ — неявное задание функции.

Дифференцируем по переменной x обе части равенства, рассматривая y, как функцию от x:

$$2x + 2yy' - 2 + 6y' = 0.$$

Выразим из полученного уравнения искомую производную y':

$$2yy' + 6y' = 2 - 2x$$
,
 $yy' + 3y' = 1 - x$,

$$y'(y+3)=1-x$$
,
 $y'=\frac{1-x}{y+3}$.

6.
$$\begin{cases} x = \ln t, \\ y = t^3 \end{cases}$$
 — параметрическое задание функции.

$$y'_{x} = \frac{y'_{t}}{x'_{t}} = \frac{(t^{3})'}{(\ln t)'} = \frac{3t^{2}}{\frac{1}{t}} = 3t^{3}.$$

Пример выполнения задания 71-80

Исследовать данную функцию $y = \frac{x^2 - 6x + 13}{x - 3}$ методами дифференциального исчисления и построить ее график.

Исследование и построение графика рекомендуется проводить по следующей схеме:

- 1) найти область определения функции;
- 2) исследовать функцию на четность, нечетность;
- 3) исследовать функцию на непрерывность, найти точки разрыва, если они существуют, определить их род;
- 4) найти точки экстремума и экстремумы функции, определить интервалы возрастания и убывания функции;
- 5) найти точки перегиба графика функции, определить интервалы выпуклости и вогнутости графика функции;
- 6) найти асимптоты графика функции, если они имеются;
- 7) найти точки пересечения графика функции с осями координат; при необходимости можно дополнительно найти точки графика функции, давая значению x ряд значений и вычисляя соответствующие значения y;
- 8) построить график функции, используя результаты исследования.

Решение

- 1. Найдем область определения функции: $D(y) = (-\infty; 3) \cup (3; +\infty)$.
- 2. Исследуем функцию на четность, нечетность:

$$y(-x) = \frac{(-x)^2 - 6(-x) + 13}{-x - 3} = \frac{x^2 + 6x + 13}{-x - 3};$$

$$y(-x) \neq y(x), \ y(-x) \neq -y(x).$$

Следовательно, функция не является ни четной, ни нечетной.

3. Исследуем функцию на непрерывность: x = 3 — точка разрыва.

Определим род точки разрыва, для этого вычислим односторонние пределы функции в точке x=3:

$$\lim_{x \to 3^{-}} \frac{x^2 - 6x + 13}{x - 3} = -\infty, \ \lim_{x \to 3^{+}} \frac{x^2 - 6x + 13}{x - 3} = +\infty.$$

Следовательно, x = 3 — точка разрыва второго рода.

4. Исследуем функцию на экстремум.

Найдем первую производную:

$$y' = \frac{(2x-6)(x-3)-(x^2-6x+13)}{(x-3)^2} = \frac{x^2-6x+5}{(x-3)^2}.$$

Найдем критические точки:

$$y' = 0$$
, если $x^2 - 6x + 5 = 0$, откуда $x_1 = 1$ и $x_2 = 5$.

Производная не существует при x = 3, но экстремума в этой точке не будет, так как это точка разрыва.

Определим знак производной в интервалах (рис. 5).

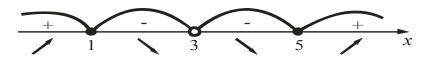


Рис. 5. Исследование на экстремум

Функция возрастает на $(-\infty; 1)$ и на $(5; +\infty)$.

Функция убывает на (1;3) и на (3;5).

x = 1 — точка максимума, x = 5 — точка минимума.

Найдем экстремумы функции:

$$y_{\text{max}} = y(1) = -4,$$

 $y_{\text{min}} = y(5) = 4.$

5. Найдем интервалы выпуклости, вогнутости и точки перегиба. Найдем вторую производную:

$$y'' = \left(\frac{x^2 - 6x + 5}{(x - 3)^2}\right)' = \frac{\left(x^2 - 6x + 5\right)'(x - 3)^2 - \left(x^2 - 6x + 5\right)((x - 3)^2)'}{(x - 3)^4} =$$

$$= \frac{(2x - 6)(x - 3)^2 - (x^2 - 6x + 5)2(x - 3)}{(x - 3)^4} =$$

$$= \frac{2(x - 3)((x - 3)^2 - x^2 + 6x - 5)}{(x - 3)^4} =$$

$$= \frac{2(x^2 - 6x + 9 - x^2 + 6x - 5)2(x - 3)}{(x - 3)^3} = \frac{8}{(x - 3)^3}.$$

Найдем критические точки второго рода. Приравняем вторую производную y'' к нулю и решим уравнение $\frac{8}{(x-3)^3} = 0$. Оно не имеет решений.

Вторая производная не существует при x=3, но данная точка не является точкой перегиба, так как является точкой разрыва. Следовательно, точек перегиба нет.

На числовую ось нанесем область определения функции. В полученных интервалах расставим знак второй производной y'' (рис. 6).

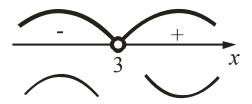


Рис. 6. Исследование на выпуклость, вогнутость, точки перегиба

График функции выпуклый на $(-\infty; 3)$ и вогнутый на $(3; +\infty)$.

6. Найдем асимптоты графика функции.

Так как x = 3 — точка разрыва второго рода, то через нее пройдет вертикальная асимптота с уравнением x = 3.

Наклонная асимптота имеет уравнение y = kx + b. Найдем параметры k и b:

$$k = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{x^2 - 6x + 13}{x(x - 3)} = \lim_{x \to \infty} \frac{x^2 - 6x + 13}{x^2 - 3x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{1 - \frac{6}{x} + \frac{13}{x^2}}{1 - \frac{3}{x}} = 1,$$

$$b = \lim_{x \to \infty} (y - kx) = \lim_{x \to \infty} \left(\frac{x^2 - 6x + 13}{x - 3} - x\right) = \lim_{x \to \infty} \frac{x^2 - 6x + 13 - x^2 + 3x}{x - 3} =$$

$$= \lim_{x \to \infty} \frac{-3x + 13}{x - 3} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{-3 + \frac{13}{x}}{1 - \frac{3}{x}} = -3.$$

Итак, y = x - 3 — уравнение наклонной асимптоты.

7. Найдем точки пересечения графика с осями координат.

При x=0 получим $y=\frac{13}{-3}=-4\frac{1}{3}$. Следовательно, $\left(0;-4\frac{1}{3}\right)$ — точ-ка пересечения с осью Oy .

При
$$y = 0$$
 получим $\frac{x^2 - 6x + 13}{x - 3} = 0$, $x^2 - 6x + 13 = 0$;
$$D = (-6)^2 - 4 \cdot 1 \cdot 13 = 36 - 52 = -16 < 0$$
.

Следовательно, точек пресечения с осью Ox нет.

8. По результатам исследования строим график функции (рис. 7).

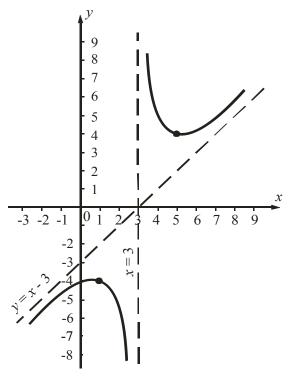


Рис. 7. График функции

Пример выполнения задания 81-90

Найти неопределенные интегралы:

1)
$$\int \left(\frac{4}{x^2} - \frac{1}{2}\sqrt[3]{x^5} + \frac{6}{\sqrt[3]{x}}\right) dx$$
;

2)
$$\int e^{x^5} x^4 dx$$
;

$$3) \int (4x+1)\sin 3x dx;$$

4)
$$\int \frac{2x-1}{x^2+2x+10} dx$$
;

5)
$$\int \cos^3 x \sin^4 x dx$$
.

Решение

1.
$$\int \left(\frac{4}{x^2} - \frac{1}{2}\sqrt[3]{x^5} + \frac{6}{\sqrt[3]{x}}\right) dx$$
.

Применим формулу интегрирования $\int x^n dx = \frac{x^{n+1}}{n+1} + C$, получим:

$$\int \left(\frac{4}{x^{2}} - \frac{1}{2}\sqrt[3]{x^{5}} + \frac{6}{\sqrt[3]{x}}\right) dx = 4\int x^{-2} dx - \frac{1}{2}\int x^{\frac{5}{3}} dx + 6\int x^{-\frac{1}{3}} dx =$$

$$= 4 \cdot \frac{x^{-1}}{-1} - \frac{1}{2} \cdot \frac{x^{\frac{8}{3}}}{\frac{8}{3}} + 6 \cdot \frac{x^{\frac{2}{3}}}{\frac{2}{3}} + C = -\frac{4}{x} - \frac{3\sqrt[3]{x^{8}}}{16} + 9\sqrt[3]{x^{2}} + C.$$

 $2. \int e^{x^5} x^4 dx.$

Применим способ замены переменной:

$$\int e^{x^5} x^4 dx = \begin{bmatrix} u = x^5, \\ du = 5x^4 dx, \\ x^4 dx = \frac{1}{5} du \end{bmatrix} = \frac{1}{5} \int e^u du = \frac{1}{5} e^u + C = \frac{1}{5} e^{x^5} + C.$$

 $3. \int (4x+1)\sin 3x dx.$

Применим формулу интегрирования по частям:

$$\int (4x+1)\sin 3x dx = \begin{bmatrix} u = 4x+1, & du = 4dx \\ dv = \sin 3x dx, & v = \int \sin 3x dx = -\frac{1}{3}\cos 3x \end{bmatrix} =$$

$$= -\frac{1}{3}(4x+1)\cos 3x + \frac{4}{3}\int \cos 3x dx =$$

$$-\frac{1}{3}(4x+1)\cos 3x + \frac{4}{3}\cdot \frac{1}{3}\sin 3x + C =$$

$$-\frac{1}{2}(4x+1)\cos 3x + \frac{4}{9}\sin 3x + C.$$

4.
$$\int \frac{2x-2}{x^2-6x+13} dx$$
.

Подынтегральная функция является простейшей рациональной дробью третьего типа. В ее знаменателе выделим полный квадрат и сделаем замену переменных:

переменных:
$$\int \frac{2x-2}{x^2-6x+13} dx = \begin{bmatrix} x^2-6x+13 = \\ = x^2-6x+9+4 = \\ = (x-3)^2+4, \\ x-3=t, \\ x=t+3, dx=dt \end{bmatrix} = \int \frac{2(t+3)-2}{t^2+4} dt = \int \frac{2t+4}{t^2+4} dt = \int \frac{2tdt}{t^2+4} + 4 \int \frac{dt}{4+t^2} = \int \frac{d(t^2+4)}{t^2+4} + 4 \int \frac{dt}{t^2+2^2} =$$
$$= \ln |t^2+4|+4\cdot \frac{1}{2}\operatorname{arctg} \frac{t}{2} + C = \ln |x^2-6x+13| + 2\operatorname{arctg} \frac{x-3}{2} + C.$$

 $5. \int \cos^3 x \sin^4 x dx.$

Применим основное тригонометрическое тождество:

$$\sin^2 x + \cos^2 x = 1$$

Получим:

 $\int \cos^3 x \sin^4 x dx = \int \cos^2 x \cos x \sin^4 x dx = \int (1 - \sin^2 x) \sin^4 x \cos x dx =$ $= \begin{bmatrix} t = \sin x, \\ dt = \cos x dx \end{bmatrix} =$ $= \int (1 - t^2) t^4 dt = \int (t^4 - t^6) dt = \frac{t^5}{5} - \frac{t^7}{7} + C = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C.$

Пример выполнения задания 91-100

Требуется:

1) вычислить определенные интегралы:

a)
$$\int_{0}^{\sqrt{3}} x \sqrt[3]{1+x^2} dx$$
; 6) $\int_{2}^{3} x \ln(x-1) dx$;

2) вычислить несобственные интегралы или установить их расходимость:

a)
$$\int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 2}$$
; 6) $\int_{0}^{1} \frac{dx}{\sqrt[4]{1 - x}}$.

Решение

1. Вычислим данные определенные интегралы:

а) Вычислим интеграл
$$\int_{0}^{\sqrt{3}} x^{3}\sqrt{1+x^{2}} dx$$
.

Выполним замену переменной. Пусть $t=1+x^2$, тогда dt=2xdx, откуда $xdx=\frac{1}{2}dt$. Находим новые пределы интегрирования. Если x=0, то t=1. Если $x=\sqrt{3}$, то t=4, что следует из зависимости $t=1+x^2$.

Тогда

$$\int_{0}^{\sqrt{3}} x \sqrt[3]{1+x^2} dx = \frac{1}{2} \int_{1}^{4} \sqrt[3]{t} dt = \frac{1}{2} \int_{1}^{4} t^{\frac{1}{3}} dt =$$

Применив формулу интеграла от степенной функции $\int u^n du = \frac{u^{n+1}}{n+1} + C \qquad \text{и} \qquad \text{формулу} \qquad \text{Ньютона-Лейбница}$ $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) - F(a), \text{ получим:}$

$$= \frac{1}{2} \cdot \frac{3t^{\frac{4}{3}}}{4} \bigg|_{1}^{4} = \frac{3\sqrt[3]{t^{4}}}{8} \bigg|_{1}^{4} = \frac{3}{8}\sqrt[3]{4^{4}} - \frac{3}{8}\sqrt[3]{1^{4}} = \frac{3}{8}\left(4\sqrt[3]{4} - 1\right).$$

Omsem: $\frac{3}{8}(4\sqrt[3]{4}-1)$.

б) Вычислим интеграл $\int_{2}^{3} x \ln(x-1) dx$.

Используем формулу интегрирования по частям

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du.$$

Пусть $u = \ln(x-1)$, dv = xdx. Находим $du = \frac{dx}{x-1}$, $v = \int xdx = \frac{x^2}{2}$. Тогда

$$\int_{2}^{3} x \ln(x-1) dx = \frac{x^{2}}{2} \ln(x-1) \Big|_{2}^{3} - \frac{1}{2} \int_{2}^{3} \frac{x^{2}}{x-1} dx = \frac{9}{2} \ln 2 - 2 \ln 1 - \frac{1}{2} \int_{2}^{3} \frac{x^{2} - 1 + 1}{x-1} dx = \frac{9}{2} \ln 2 - \frac{1}{2} \int_{2}^{3} \frac{(x-1)(x+1) + 1}{x-1} dx = \frac{9}{2} \ln 2 - \frac{1}{2} \int_{2}^{3} \left(x + 1 + \frac{1}{x-1}\right) dx = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\int_{2}^{3} x dx + \int_{2}^{3} dx + \int_{2}^{3} \frac{d(x-1)}{x-1} dx + \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + x \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} \right) = \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{x^{2}}{2} \Big|_{2}^{3} + \ln(x-1) \Big|_{2}^{3} +$$

$$= \frac{9}{2} \ln 2 - \frac{1}{2} \left(\frac{9}{2} - 2 + 3 - 2 + \ln 2 - \ln 1 \right) = 4 \ln 2 - \frac{7}{4}.$$
Omsem: $4 \ln 2 - \frac{7}{4}$.

- 2. Вычислим несобственные интегралы или установим их расходимость:
- а) Несобственный интеграл $\int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 2}$ с бесконечным верхним пределом интегрирования вычислим с помощью предельного перехода:

$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 2x + 2} = \lim_{b \to +\infty} \int_{0}^{b} \frac{d(x+1)}{(x+1)^{2} + 1} = \lim_{b \to +\infty} \left(\operatorname{arctg}(x+1) \right) \Big|_{0}^{b} =$$

$$= \lim_{b \to +\infty} \left(\operatorname{arctg}(b+1) - \operatorname{arctg} 1 \right) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

Omsem: $\frac{\pi}{4}$.

б) Так как x=1 является точкой разрыва подынтегральной функции $y=\frac{1}{\sqrt[4]{1-x}}$, то интеграл $\int_0^1 \frac{dx}{\sqrt[4]{1-x}}$ является несобственным. Вычислим его с помощью предельного перехода:

$$\int_{0}^{1} \frac{dx}{\sqrt[4]{1-x}} = \lim_{\epsilon \to 0} \int_{0}^{1-\epsilon} \frac{dx}{\sqrt[4]{1-x}} = -\lim_{\epsilon \to 0} \int_{0}^{1-\epsilon} \left(1-x\right)^{-\frac{1}{4}} d\left(1-x\right) =$$

$$= -\lim_{\epsilon \to 0} \frac{4\left(1-x\right)^{\frac{3}{4}}}{3} \bigg|_{0}^{1-\epsilon} = -\frac{4}{3} \lim_{\epsilon \to 0} \sqrt[4]{\left(1-x\right)^{3}} \bigg|_{0}^{1-\epsilon} = -\frac{4}{3} \lim_{\epsilon \to 0} \left(\sqrt[4]{\left(1-1+\epsilon\right)^{3}} - \sqrt[4]{1^{3}}\right) =$$

$$= -\frac{4}{3} \lim_{\epsilon \to 0} \left(\sqrt[4]{\epsilon^{3}} - 1\right) = \frac{4}{3}.$$

Ombem: $\frac{4}{3}$.

Пример выполнения задания 101-110

Вычислите площадь фигуры, ограниченной линиями $y = 2x^2 - x - 2$ и $y = -x^2 + x - 1$. Построить фигуру.

Решение

Построив линии, получим фигуру (рис. 8).

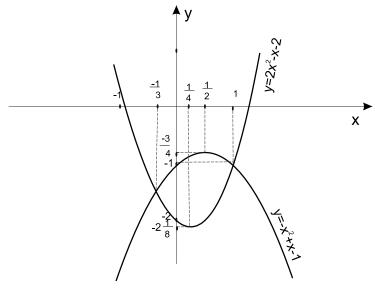


Рис. 8. Фигура

Найдем абсциссы точек пересечения заданных парабол. Для этого приравняем правые части их уравнений:

$$2x^2 - x - 2 = -x^2 + x - 1.$$

Решим полученное квадратное уравнение.

$$3x^{2} - 2x - 1 = 0,$$

$$D = 4 + 4 \cdot 3 = 16,$$

$$x_{1} = \frac{2 + 4}{6} = 1, \ x_{2} = \frac{2 - 4}{6} = -\frac{1}{3}.$$

Вычисление площади осуществляем по формуле

$$S = \int_{a}^{b} (f(x) - g(x)) dx,$$

где y = f(x), y = g(x) — кривые, ограничивающие фигуру $(f(x) \ge g(x))$. Тогда

$$S = \int_{-\frac{1}{3}}^{1} ((-x^{2} + x - 1) - (2x^{2} - x - 2)) dx = \int_{-\frac{1}{3}}^{1} (-3x^{2} + 2x + 1) dx =$$

$$= \left(-3 \cdot \frac{x^{3}}{3} + 2 \cdot \frac{x^{2}}{2} + x \right) \Big|_{-\frac{1}{3}}^{1} = \left(-x^{3} + x^{2} + x \right) \Big|_{-\frac{1}{3}}^{1} =$$

$$=\left(-1+1+1\right)-\left(\frac{1}{27}+\frac{1}{9}-\frac{1}{3}\right)=\frac{32}{27} \text{ (кв. ед.)}.$$
 Ответ: $\frac{32}{27}$ (кв. ед.).

Пример выполнения задания 111-120

Вычислить объем тела, образованного вращением вокруг оси Ox фигуры, расположенной в первом квадранте и ограниченной параболой $y = 8x^2$, прямой y = -6x + 14 и осью Ox. Сделать рисунок фигуры вращения.

Решение

Построив линии, получим фигуру вращения (рис. 9).

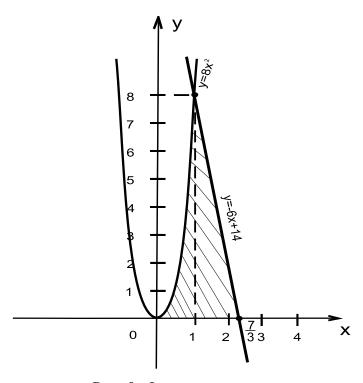


Рис. 9. Фигура вращения

Найдем абсциссу точки пересечения параболы и прямой в первом квадранте. Для этого приравняем правые части их уравнений:

$$8x^2 = -6x + 14$$
.

Решим полученное квадратное уравнение:

$$4x^{2} + 3x - 7 = 0,$$

$$D = 9 - 4 \cdot 4 \cdot (-7) = 121,$$

$$x_{1} = \frac{-3 - 11}{8} = -\frac{7}{4}, \ x_{2} = \frac{-3 + 11}{8} = 1.$$

Первому квадранту соответствует корень $x_2 = 1$.

Найдем абсциссу точки пересечения прямой y = -6x + 14 с осью Ox, решив уравнение -6x + 14 = 0, откуда $x = \frac{7}{3}$.

Таким образом, тело ограничено при $0 \le x \le 1$ поверхностью, образованной вращением параболы $y = 8x^2$ вокруг оси Ox, а при $1 \le x \le \frac{7}{3}$ — вращением прямой y = -6x + 14.

Объем тела вращения вычисляется по формуле

$$V = \pi \int_{a}^{b} f^{2}(x) dx,$$

где y = f(x), x = a, x = b, y = 0 — уравнения линий, ограничивающих криволинейную трапецию, которая вращается вокруг оси Ox.

Тогда искомый объем

$$V = \pi \int_{0}^{1} (8x^{2})^{2} dx + \pi \int_{1}^{\frac{7}{3}} (-6x + 14)^{2} dx.$$

Для вычисления второго интеграла применим метод подведения под знак дифференциала:

$$V = 64\pi \int_{0}^{1} x^{4} dx - \frac{\pi}{6} \int_{1}^{7} \left(-6x + 14\right)^{2} d\left(-6x + 14\right) =$$

$$= 64\pi \left(\frac{x^{5}}{5}\right) \Big|_{0}^{1} - \frac{\pi}{6} \cdot \frac{\left(-6x + 14\right)^{3}}{3} \Big|_{1}^{7} = \frac{64\pi}{5} + \frac{256\pi}{9} = \frac{1856}{45} \pi \text{ (куб. ед.)}.$$

$$Omsem: \frac{1856}{45} \pi \text{ (куб. ед.)}.$$

Пример выполнения задания 121-130

Дана функция $u = \frac{y}{x}$. Проверить, удовлетворяет ли она уравнению $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x dv} + y^2 \frac{\partial^2 u}{\partial v^2} = 0.$

Решение

Находим частные производные первого порядка функции $u = \frac{y}{x}$:

$$\frac{\partial u}{\partial x} = -\frac{y}{x^2}; \qquad \frac{\partial u}{\partial y} = \frac{1}{x}.$$

Находим частные производные второго порядка функции $u = \frac{y}{x}$:

$$\frac{\partial^2 u}{\partial x^2} = \frac{2}{x^3}; \quad \frac{\partial^2 u}{\partial x \partial y} = -\frac{1}{x^2}; \quad \frac{\partial^2 u}{\partial y^2} = 0.$$

Подставляем частные производные в левую часть данного уравнения:

$$x^{2} \cdot \frac{2}{x^{3}} + 2xy\left(-\frac{1}{x^{2}}\right) + y^{2} \cdot 0 = 0;$$

$$\frac{2}{x} - \frac{2y}{x} = 0.$$

Поскольку левая часть не равна правой, то функция $u = \frac{y}{x}$ не удовлетворяет заданному уравнению.

Пример выполнения задания 131-140

Исследовать функцию $z = x^3 + y^3 - 3xy + 5$ на экстремум.

Решение

- 1. Область определения функции: $D(z) = R^2$.
- 2. Частные производные первого порядка:

$$z'_{x} = 3x^{2} - 3y;$$

 $z'_{y} = 3y^{2} - 3x.$

3. Найдем критические точки:

ТОЧКИ:
$$\begin{cases} 3x^2 - 3y = 0, \\ 3y^2 - 3x = 0; \end{cases}$$

$$\begin{cases} x^2 - y = 0, \\ y^2 - x = 0; \end{cases}$$

$$\begin{cases} y = x^2, \\ x^4 - x = 0; \end{cases}$$

$$\begin{cases} x = 0, \\ x(x^3 - 1) = 0; \end{cases}$$

$$\begin{cases} x = 0, \\ y = 0 \end{cases}$$

$$\begin{cases} x = 1, \\ y = 0 \end{cases}$$

$$\begin{cases} x = 1, \\ y = 0 \end{cases}$$

Итак, $M_1(0;0)$ и $M_2(1;1)$ — критические точки.

4. Найдем частные производные второго порядка:

$$z''_{xx} = (3x^2 - 3y)'_{x} = 6x;$$

$$z''_{xy} = (3x^2 - 3y)'_{y} = -3;$$

$$z''_{yy} = (3y^2 - 3x)'_{y} = 6y.$$

5. Проверим выполнение достаточных условий экстремума в точке $M_1(0;0)$:

$$A = z_{xx}''(M_1) = 0,$$

$$B = z_{xy}''(M_1) = -3,$$

$$C = z_{yy}''(M_1) = 0.$$

$$\Delta = AC - B^2 = -3 < 0.$$

Следовательно, точка $M_1(0;0)$ не является точкой экстремума.

6. Проверим выполнение достаточных условий экстремума в точке $M_2(1;1)$:

$$A = z_{xx}''(M_2) = 6,$$

$$B = z_{xy}''(M_2) = -3,$$

$$C = z_{yy}''(M_2) = 6.$$

$$\Delta = AC - B^2 = 6 \cdot 6 - (-3)^2 = 27 > 0.$$

Так как $\Delta>0$, то точка $M_2(1;1)$ является точкой экстремума. Так как A=6>0, то точка $M_2(1;1)$ — точка минимума.

7. Найдем экстремум функции.

$$z(M_2) = z(1;1) = 1^3 + 1^3 - 3 \cdot 1 \cdot 1 + 5 = 4$$
 — максимум функции.

Ответ: 4 — максимум функции.

Пример выполнения задания 141-150

Вычислить интеграл $\int_{0}^{2} dx \int_{0}^{x} x^{2} y \, dy.$

Решение

Вычислим внутренний интеграл по переменной y, считая x постоянной величиной:

$$\int_{0}^{x} x^{2} y dy = x^{2} \int_{0}^{x} y dy = x^{2} \cdot \frac{y^{2}}{2} \Big|_{0}^{x} = x^{2} \cdot \frac{x^{2}}{2} - 0 = \frac{x^{4}}{2}.$$

82

Вычислим внешний интеграл по переменной x от функции, полученной при вычислении внутреннего интеграла:

$$\int_{0}^{2} \frac{x^{4}}{2} dx = \frac{1}{2} \int_{0}^{2} x^{4} dx = \frac{1}{2} \cdot \frac{x^{5}}{5} \Big|_{0}^{2} = \frac{x^{5}}{10} \Big|_{0}^{2} = \frac{2^{5}}{10} - 0 = \frac{32}{10} = 3.2.$$

Итак,

$$\int_{0}^{2} dx \int_{0}^{x} x^{2} y \, dy = 3.2.$$

Ответ: 3,2.

Пример выполнения задания 151-160

Вычислить объем тела, ограниченного поверхностями z=0, y=0, 4x+3y-12=0 и $z=9-x^2$ ($x\geq 0$). Данное тело и область интегрирования изобразить на чертеже.

Решение

Построим тело. Учитывая, что z = 0 — плоскость Oxy, y = 0 — плоскость Oxz, 4x + 3y - 12 = 0 — плоскость, параллельная оси Oz, $z = 9 - x^2$ — цилиндрическая поверхность, у которой направляющей служит парабола, а образующие параллельны оси Oy, строим цилиндрическое тело (рис. 10) и область интегрирования (рис. 11).

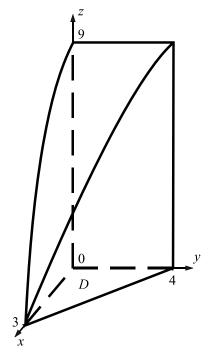


Рис. 10. Тело

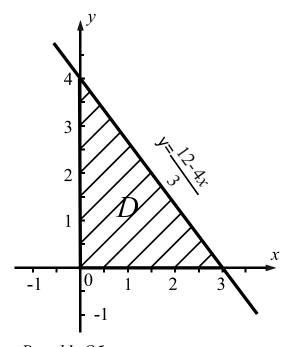


Рис. 11. Область интегрирования

Объем тела найдем по формуле

$$V = \iint_D f(x, y) dxdy$$
,

где z = f(x, y) — уравнение поверхности, ограничивающей тело сверху, D — проекция тела на плоскость xOy.

Тогда

$$V = \iint_{D} (9 - x^{2}) dx dy = \int_{0}^{3} dx \int_{0}^{\frac{12 - 4x}{3}} (9 - x^{2}) dy = \int_{0}^{3} (9 - x^{2}) y \Big|_{0}^{\frac{12 - 4x}{3}} dx =$$

$$= \int_{0}^{3} (9 - x^{2}) \frac{12 - 4x}{3} dx = \int_{0}^{3} (36 - 12x - 4x^{2} + \frac{4}{3}x^{3}) dx =$$

$$= \left(36x - 6x^{2} - \frac{4x^{3}}{3} + \frac{x^{4}}{3} \right) \Big|_{0}^{3} = 108 - 54 - 36 + 27 = 45.$$

Om em: V = 45 куб. ед.

Пример выполнения задания 161-170

Дан криволинейный интеграл $\int_{l} y dx + x dy$ и точки A(1;1), B(4;1),

C(4; 2). Вычислить данный интеграл по трем различным путям l:

- 1) по ломаной ABC;
- 2) по прямой AC;
- 3) по кривой $y^2 = x$ от точки A до точки C .

Решение

Изобразим точки A(1;1), B(4;1), C(4;2), а также пути интегрирования (рис. 12).

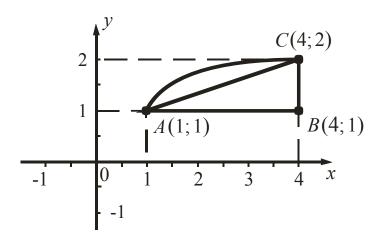


Рис. 12. Пути интегрирования

1. Интеграл по ломаной ABC заменим суммой интегралов по ее звеньям AB и BC :

На $AB \ y = 1$, dy = 0 и x изменяется от $x_A = 1$ до $x_B = 4$. Тогда

$$\int_{AB} y dx + x dy = \int_{1}^{4} dx = x \Big|_{1}^{4} = 4 - 1 = 3.$$

На BC x=4, dx=0 и y изменяется от $y_B=1$ до $y_C=2$. Тогда

$$\int_{BC} y dx + x dy = \int_{1}^{2} 4 dy = 4y \Big|_{1}^{2} = 8 - 4 = 4.$$

Следовательно,

$$\int_{ABC} ydx + xdy = 3 + 4 = 7.$$

2. Составим уравнение прямой AC. Воспользуемся уравнением, прямой, проходящей через две точки:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}; \qquad \frac{x-1}{4-1} = \frac{y-1}{2-1}; \qquad \frac{x-1}{3} = \frac{y-1}{1}, \quad x = 3y-2.$$

Таким образом, на прямой AC x=3y-2, dx=3dy и y изменяется от $y_B=1$ до $y_C=2$.

Тогда

$$\int_{AC} y dx + x dy = \int_{1}^{2} (3y dy + (3y - 2) dy) = \int_{1}^{2} (3y + 3y - 2) dy =$$

$$= \int_{1}^{2} (6y - 2) dy = (3y^{2} - 2y)|_{1}^{2} = (12 - 4) - (3 - 2) = 7.$$

3. На дуге параболы AC $y^2=x$, dx=2ydy и y изменяется от $y_B=1$ до $y_C=2$. Тогда

$$\int_{AC} y dx + x dy = \int_{1}^{2} (y \cdot 2y dy + y^{2} dy) = 3 \int_{1}^{2} y^{2} dy = y^{3} \Big|_{1}^{2} = 8 - 1 = 7.$$

В данном случае значение интеграла оказалось одинаковым по каждому из выбранных путей, то есть интеграл не зависит от пути интегрирования. Так бывает в интеграле $\int_{4B} P(x,y) dx + Q(x,y) dy$, когда выпол-

няется условие независимости криволинейного интеграла 2-го рода от пути интегрирования:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

В данном интеграле $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 1$.

Ответ: 7.

Пример выполнения задания 171-180

Даны комплексные числа $z_1=3+7i$, $z_2=5-2i$, $z_3=1+\sqrt{3}i$. Требуется:

- 1) найти $z_1 \cdot z_2$;
- 2) найти $\frac{z_1}{z_2}$;
- 3) записать в тригонометрической и показательной формах число z_3 .

Решение

1. Найдем $z_1 \cdot z_2$:

$$z_1 \cdot z_2 = (3+7i)(5-2i) = 15-6i+35i-14i^2 = 15+29i-14\cdot(-1) = 15+29i+14=29+29i$$
.

2. Чтобы выполнить деление комплексных чисел в алгебраической форме, умножаем числитель и знаменатель дроби на число, сопряженное знаменателю:

$$\frac{z_1}{z_2} = \frac{3+7i}{5-2i} = \frac{(3+7i)(5+2i)}{(5-2i)(5+2i)} = \frac{15+6i+35i+14i^2}{25-4i^2} = \frac{15+41i-14}{25+4} = \frac{1+41i}{29} = \frac{1}{29} + \frac{41}{29}i.$$

3. Тригонометрическая форма комплексного числа z = x + iy имеет вид: $z = r(\cos \varphi + i \sin \varphi)$,

где r — модуль комплексного числа z, который вычисляется по формуле $r = \sqrt{x^2 + y^2} \; ,$

Показательная форма комплексного числа z = x + iy имеет вид:

$$z = re^{i\varphi}$$
.

Найдем модуль и аргумент комплексного числа $z_3 = 1 + \sqrt{3}i$:

$$r = \sqrt{1+3} = 2,$$

$$\varphi = \arctan \frac{\sqrt{3}}{1} = \frac{\pi}{3}.$$

Тогда тригонометрическая форма комплексного числа $z_3 = 1 + \sqrt{3}i$ имеет вид:

$$z_3 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right),\,$$

а показательная форма имеет вид:

$$z_3 = 2e^{i\frac{\pi}{3}}.$$

Omeem: 1)
$$z_1 \cdot z_2 = 9 + 29i$$
; 2) $\frac{z_1}{z_2} = \frac{1}{29} + \frac{41}{29}i$;
3) $z_3 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2e^{i\frac{\pi}{3}}$.

Пример выполнения задания 181-190

Найти общее решение (общий интеграл) дифференциального уравнения первого порядка:

1)
$$x\sqrt{1+y^2}dx + y(1+x^2)dy = 0$$
;

2)
$$(xy + y^2)dx - x^2dy = 0$$
;

3)
$$x^2y' - 5xy - 1 = 0$$
.

Решение

1. Уравнение $x\sqrt{1+y^2}dx + y(1+x^2)dy = 0$ является дифференциальным уравнением первого порядка с разделяющимися переменными.

Разделим переменные, деля обе части уравнения на $(1+x^2)\sqrt{1+y^2}$, получим:

$$\frac{x}{1+x^2} dx + \frac{y}{\sqrt{1+y^2}} dy = 0.$$

Интегрируем обе части:

$$\int \frac{x}{1+x^2} dx + \int \frac{y}{\sqrt{1+y^2}} dy = C,$$

$$\frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} + \frac{1}{2} \int (1+y^2)^{\frac{1}{2}} d(1+y^2) = C,$$

$$\frac{1}{2} \ln(1+x^2) + \frac{1}{2} \cdot \frac{(1+y^2)^{\frac{1}{2}}}{\frac{1}{2}} = C,$$

$$\frac{1}{2} \ln(1+x^2) + \sqrt{1+y^2} = C.$$

Получили общий интеграл данного уравнения.

Ombem:
$$\frac{1}{2} \ln(1+x^2) + \sqrt{1+y^2} = C$$
.

2. Уравнение $(xy + y^2)dx - x^2dy = 0$ является однородным дифференциальным уравнением первого порядка.

Разделим обе части уравнения на dx:

$$(xy + y^2) - x^2 \frac{dy}{dx} = 0.$$

Так как $\frac{dy}{dx} = y'$, получим:

$$(xy + y^{2}) - x^{2}y' = 0,$$

$$x^{2}y' = xy + y^{2},$$

$$y' = \frac{xy + y^{2}}{x^{2}},$$

$$y' = \frac{y}{x} + \frac{y^{2}}{x^{2}}.$$

Сделаем замену $u = \frac{y}{x}$, где u — некоторая функция переменной x.

Тогда y = ux. Дифференцируя, получим y' = u'x + u.

В результате замены заданное уравнение примет вид:

$$u'x + u = u + u^2$$

ИЛИ

$$u'x = u^2,$$
$$x\frac{du}{dx} = u^2.$$

Получили дифференциальное уравнение с разделяющимися переменными. Разделим переменные, проинтегрируем и получим его общий интеграл:

$$xdu = u^{2}dx,$$

$$\frac{du}{u^{2}} = \frac{dx}{x},$$

$$\int \frac{du}{u^{2}} = \int \frac{dx}{x},$$

$$-\frac{1}{u} = \ln|x| + C,$$

Так как $u = \frac{y}{x}$, то имеем:

$$-\frac{x}{y} = \ln|x| + C,$$

откуда

$$y = -\frac{x}{\ln|x| + C}.$$

Получили общее решение данного однородного дифференциального уравнения.

Omeem: $y = -\frac{x}{\ln|x| + C}$.

3. Уравнение $x^2y' - 5xy - 1 = 0$ является линейным дифференциальным уравнением первого порядка.

Разделим обе части уравнения на x^2 :

$$y' - \frac{5}{x}y = \frac{1}{x^2}.$$

Сделаем замену y = uv, где u и v — некоторые функции переменной x. Дифференцируя, получим y' = u'v + uv'.

В результате замены заданное уравнение примет вид:

$$u'v + uv' - \frac{5}{x}uv = \frac{1}{x^2}$$

или

$$u'v + u\left(v' - \frac{5}{x}v\right) = \frac{1}{x^2}.$$

Выберем функцию у так, чтобы имело место равенство

$$v' - \frac{5}{x}v = 0.$$

Найдем из него функцию v, как частное решение:

$$\frac{dv}{dx} = \frac{5v}{x},$$

$$\frac{dv}{v} = \frac{5dx}{x},$$

$$\int \frac{dv}{v} = 5\int \frac{dx}{x},$$

$$\ln|v| = 5\ln|x|,$$

$$\ln|v| = \ln|x^{5}|,$$

$$v = x^{5}.$$

Найдем из него функцию v, как частное решение:

$$u'v = \frac{1}{x^2}.$$

Подставляя в него найденную функцию $v = x^5$, получим уравнение

$$x^5u'=\frac{1}{x^2}.$$

Найдем из него функцию u, как общее решение:

$$x^{5} \frac{du}{dx} = \frac{1}{x^{2}},$$

$$x^{5} du = \frac{dx}{x^{2}},$$

$$du = \frac{dx}{x^{7}},$$

$$\int du = \int \frac{dx}{x^{7}},$$

$$u = -\frac{1}{6x^{6}} + C.$$

Тогда

$$y = uv = \left(-\frac{1}{6x^6} + C\right)x^5 = Cx^5 - \frac{1}{6x}.$$

Итак, $y = Cx^5 - \frac{1}{6x}$ — общее решение данного линейного дифференциального уравнения.

Omeem:
$$y = Cx^5 - \frac{1}{6x}$$
.

Пример выполнения задания 191-200

Найти частное решение дифференциального уравнения второго порядка, допускающего понижение порядка, $y'' = \frac{1}{x^2} - \frac{y'}{x}$ при начальных условиях y(1) = 1, y'(1) = 2.

Решение

Уравнение $y'' = \frac{1}{x^2} - \frac{y'}{x}$ не содержит явным образом функцию y, поэтому является дифференциальным уравнением второго порядка, допускающим понижение порядка с помощью замены y' = p, где p = p(x). Тогда y'' = p'. В результате замены уравнение примет вид:

$$p' = \frac{1}{x^2} - \frac{p}{x}$$
или
$$p' + \frac{p}{x} = \frac{1}{x^2}.$$

Полученное уравнение является линейным дифференциальным уравнением первого порядка. Для его решения применим замену p = uv, p' = u'v + uv'. В результате которой уравнение примет вид:

$$u'v + uv' + \frac{uv}{x} = \frac{1}{x^2}$$

ИЛИ

$$u'v + u\left(v' + \frac{v}{x}\right) = \frac{1}{x^2}.$$

Выберем функцию у так, чтобы имело место равенство

$$v' + \frac{v}{x} = 0.$$

Найдем из него функцию *v*, как частное решение:

$$\frac{dv}{dx} = -\frac{v}{x},$$

$$\frac{dv}{v} = -\frac{dx}{x},$$

$$\int \frac{dv}{v} = -\int \frac{dx}{x},$$

$$\ln|v| = -\ln|x|,$$

$$\ln|v| = \ln\left|\frac{1}{x}\right|,$$

$$v = \frac{1}{x}.$$

При таком выборе функции v функция u находится из уравнения

$$u'v = \frac{1}{x^2}.$$

Подставляя в него найденную функцию $v = \frac{1}{x}$, получим уравнение:

$$\frac{1}{x}u' = \frac{1}{x^2}.$$

Найдем из него функцию u, как общее решение:

$$\frac{du}{xdx} = \frac{1}{x^2},$$

$$du = \frac{dx}{x},$$

$$\int du = \int \frac{dx}{x},$$

$$u = \ln|x| + C_1.$$

Тогда

$$p = uv = (\ln|x| + C_1)\frac{1}{x} = \frac{\ln|x|}{x} + \frac{C_1}{x}.$$

Так как p = y', то имеем:

$$y' = \frac{\ln|x|}{x} + \frac{C_1}{x}.$$

Используем начальное условие y'(1)=2. Подставляя в последнее равенство x=1, y'=2, найдем C_1 :

$$2 = \frac{\ln 1}{1} + \frac{C_1}{1},$$

$$C_1 = 2.$$

Тогда

$$y' = \frac{\ln|x|}{x} + \frac{2}{x}.$$

Интегрированием найдем из полученного уравнения функцию у:

$$y = \int \left(\frac{\ln|x|}{x} + \frac{2}{x}\right) dx = \int \ln|x| d(\ln|x|) + 2\int \frac{dx}{x} = \frac{\ln^2|x|}{2} + 2\ln|x| + C_2.$$

Итак, получили:

$$y = \frac{\ln^2 |x|}{2} + 2 \ln |x| + C_2$$
.

Используем начальное условие y(1) = 1. Подставляя в последнее равенство x = 1, y = 1, найдем C_2 :

$$1 = \frac{\ln^2 1}{2} + 2 \ln 1 + C_2,$$

$$C_2 = 1.$$

Следовательно,

$$y = \frac{\ln^2|x|}{2} + 2\ln|x| + 1.$$

Получили частное решение данного дифференциального уравнения, удовлетворяющее указанным начальным условиям.

Omeem:
$$y = \frac{\ln^2 |x|}{2} + 2 \ln |x| + 1$$
.

Пример выполнения задания 201-210

Найти общее решение дифференциального уравнения второго порядка:

1)
$$y'' + 2y' = x^2 + 2x - 1$$
;

2)
$$y'' - y' - 2y = 9e^{2x}$$
;

3)
$$y'' + 4y = 4\cos 2x - 12\sin 2x$$
.

Решение

1. Уравнение $y'' + 2y' = x^2 + 2x - 1$ является линейным неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами.

Его общее решение имеет вид:

$$y_{oH} = y_{oo} + y_{vH},$$

где y_{on} — общее решение данного линейного неоднородного дифференциального уравнения;

 y_{oo} — общее решение соответствующего линейного однородного дифференциального уравнения;

Найдем y_{oo} . Для этого решим соответствующее линейное однородное дифференциальное уравнение

$$y'' + 2y' = 0.$$

Составим характеристическое уравнение:

$$k^2 + 2k = 0$$
.

Его корни: $k_1 = 0$ и $k_2 = -2$.

Тогда y_{oo} находим по формуле

$$y_{oo} = C_1 e^{k_1 x} + C_2 e^{k_2 x}.$$

Получим общее решение соответствующего линейного однородного дифференциального уравнения:

$$y_{00} = C_1 e^{0x} + C_2 e^{-2x}$$

ИЛИ

$$y_{00} = C_1 + C_2 e^{-2x}$$
.

Найдем $y_{_{\mathit{ч_H}}}$. Так как правая часть данного линейного неоднородного дифференциального уравнения представляет собой многочлен второй степени и один из корней характеристического уравнения равен нулю, то $y_{_{\mathit{ч_H}}}$ будем искать в виде:

$$y_{_{YH}} = (Ax^2 + Bx + C)x = Ax^3 + Bx^2 + Cx$$
.

Найдем y'_{u_H} и y''_{u_H} :

$$y'_{uH} = 3Ax^2 + 2Bx + C$$
,
 $y''_{uH} = 6Ax + 2B$.

Подставив $y_{_{\mathit{q_H}}},\ y'_{_{\mathit{q_H}}}$ и $y''_{_{\mathit{q_H}}}$ в данное уравнение, получим:

$$6Ax + 2B + 2(3Ax^2 + 2Bx + C) = x^2 + 2x - 1$$

ИЛИ

$$6Ax + 2B + 6Ax^2 + 4Bx + 2C = x^2 + 2x - 1$$
.

Приравняем коэффициенты при одинаковых степенях х:

$$\begin{cases} 6A = 1, \\ 6A + 4B = 2, \\ 2B + 2C = -1. \end{cases}$$

Отсюда имеем:

$$A = \frac{1}{6}, B = \frac{1}{4}, C = -\frac{3}{4}.$$

Таким образом, получаем частное решение данного линейного неоднородного дифференциального уравнения:

$$y_{_{4H}} = \frac{1}{6}x^3 + \frac{1}{4}x^2 - \frac{3}{4}x.$$

Найдем
$$y_{oH}$$
: $y_{oH} = y_{oo} + y_{vH} = C_1 + C_2 e^{-2x} + \frac{1}{6} x^3 + \frac{1}{4} x^2 - \frac{3}{4} x$.

Итак, общее решение данного линейного неоднородного дифференциального уравнения:

$$y = C_1 + C_2 e^{-2x} + \frac{1}{6} x^3 + \frac{1}{4} x^2 - \frac{3}{4} x.$$
 Ombem: $y = C_1 + C_2 e^{-2x} + \frac{1}{6} x^3 + \frac{1}{4} x^2 - \frac{3}{4} x.$

2. Уравнение $y'' - y' - 2y = 9e^{2x}$ является линейным неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами.

Его общее решение имеет вид

$$y_{\scriptscriptstyle OH} = y_{\scriptscriptstyle OO} + y_{\scriptscriptstyle YH},$$

где y_{on} — общее решение данного линейного неоднородного дифференциального уравнения;

 y_{oo} — общее решение соответствующего линейного однородного дифференциального уравнения;

 $y_{_{\mathit{ч}_{\mathit{H}}}}$ — частное решение данного линейного неоднородного дифференциального уравнения.

Найдем y_{oo} . Для этого решим соответствующее линейное однородное дифференциальное уравнение y''-y'-2y=0.

Составим характеристическое уравнение:

$$k^2 - k - 2 = 0.$$

Его корни: $k_1 = -1$ и $k_2 = 2$.

Тогда y_{oo} находим по формуле

$$y_{oo} = C_1 e^{k_1 x} + C_2 e^{k_2 x}.$$

Получим общее решение соответствующего линейного однородного дифференциального уравнения:

$$y_{oo} = C_1 e^{-x} + C_2 e^{2x}.$$

Найдем $y_{_{\mathit{ч_H}}}$. Так как правая часть данного линейного неоднородного дифференциального уравнения представляет собой показательную функцию вида $f(x) = ae^{mx}$ и m=2 совпадает с одним из корней характеристического уравнения, то $y_{_{\mathit{ч_H}}}$ будем искать в виде:

$$y_{yy} = Axe^{2x}$$
.

Найдем y'_{q_H} и y''_{q_H} :

$$y'_{_{YH}} = Ae^{2x} + 2Axe^{2x},$$

$$y''_{_{YH}} = 2Ae^{2x} + 2Ae^{2x} + 4Axe^{2x}.$$

Подставив y_{uh} , y'_{uh} и y''_{uh} в данное уравнение, получим:

$$2Ae^{2x} + 2Ae^{2x} + 4Axe^{2x} - Ae^{2x} - 2Axe^{2x} - 2Axe^{2x} = 9e^{2x}.$$

Приведя подобные слагаемые и разделив обе части уравнения на e^{2x} , определим коэффициент A:

$$3Ae^{2x} = 9e^{2x},$$
$$3A = 9,$$
$$A = 3.$$

Таким образом, получаем частное решение данного линейного неоднородного дифференциального уравнения:

$$y_{_{\mathit{HH}}} = 3xe^{2x}.$$

Найдем y_{oH} :

$$y_{oH} = y_{oo} + y_{uH} = C_1 e^{-x} + C_2 e^{2x} + 3x e^{2x}$$
.

Итак, общее решение данного линейного неоднородного дифференциального уравнения:

$$y = C_1 e^{-x} + C_2 e^{2x} + 3x e^{2x}$$
.

Omeem: $y = C_1 e^{-x} + C_2 e^{2x} + 3xe^{2x}$.

3. Уравнение $y'' + 4y = 4\cos 2x - 12\sin 2x$ является линейным неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами.

Его общее решение имеет вид:

$$y_{\scriptscriptstyle OH} = y_{\scriptscriptstyle OO} + y_{\scriptscriptstyle YH},$$

где y_{oH} — общее решение данного линейного неоднородного дифференциального уравнения;

 y_{oo} — общее решение соответствующего линейного однородного дифференциального уравнения;

Найдем y_{oo} . Для этого решим соответствующее линейное однородное дифференциальное уравнение

$$y'' + 4y = 0.$$

Составим характеристическое уравнение:

$$k^2 + 4 = 0$$

ИЛИ

$$k^2 = -4$$
.

Его корни: $k_1 = -2i$ и $k_2 = 2i$.

Так как корни характеристического уравнения комплексные сопряженные вида $k_{1,2} = \alpha \pm \beta i$, то y_{oo} находим по формуле

$$y_{oo} = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right).$$

Получим общее решение соответствующего линейного однородного дифференциального уравнения:

$$y_{oo} = e^{0x} (C_1 \cos 2x + C_2 \sin 2x)$$

ИЛИ

$$y_{oo} = C_1 \cos 2x + C_2 \sin 2x.$$

Найдем $y_{_{\mathit{UH}}}$. Так как правая часть данного линейного неоднородного дифференциального уравнения представляет собой тригонометрическую функцию вида $f(x) = a \cos nx + b \sin nx$ и числа $k = \pm ni = \pm 2i$ являются корнями характеристического уравнения, то $y_{_{\mathit{UH}}}$ будем искать в виде:

$$y_{_{YH}} = x(A\cos 2x + B\sin 2x).$$

Найдем y'_{u_H} и y''_{u_H} :

$$y'_{_{YH}} = A\cos 2x + B\sin 2x + x(-2A\sin 2x + 2B\cos 2x),$$

$$y''_{_{YH}} = -2A\sin 2x + 2B\cos 2x - 2A\sin 2x + 2B\cos 2x +$$

$$+ x(-4A\cos 2x - 4B\sin 2x) =$$

$$= -4A\sin 2x + 4B\cos 2x - 4Ax\cos 2x - 4Bx\sin 2x.$$

Подставив y_{uh} , y'_{uh} и y''_{uh} в данное уравнение, получим:

$$-4A\sin 2x + 4B\cos 2x - 4Ax\cos 2x - 4Bx\sin 2x + 4Ax\cos 2x + 4Bx\sin 2x = 4\cos 2x - 12\sin 2x$$

ИЛИ

$$-4A\sin 2x + 4B\cos 2x = 4\cos 2x - 12\sin 2x$$
.

Приравняем коэффициенты при $\sin 2x$ и $\cos 2x$, получим:

$$\begin{cases} -4A = -12, \\ 4B = 4. \end{cases}$$

Тогда A = 3, B = 1.

Таким образом, получаем частное решение данного линейного неоднородного дифференциального уравнения:

$$y_{yH} = x(3\cos 2x + \sin 2x).$$

Найдем y_{oH} :

$$y_{OH} = y_{OO} + y_{HH} = C_1 \cos 2x + C_2 \sin 2x + x(3\cos 2x + \sin 2x).$$

Итак, общее решение данного линейного неоднородного дифференциального уравнения:

$$y = C_1 \cos 2x + C_2 \sin 2x + x(3\cos 2x + \sin 2x).$$

Ombem: $y = C_1 \cos 2x + C_2 \sin 2x + x(3\cos 2x + \sin 2x)$.

Пример выполнения задания 211-220

С помощью признака Даламбера или Коши исследовать на сходимость данные ряды:

1)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$$
;

$$2) \sum_{n=1}^{\infty} \frac{n}{3^n}.$$

Решение

1. Для исследования ряда $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}} = \frac{1}{\sqrt{3}} + \frac{1}{2} + \frac{1}{\sqrt{5}} + \dots$ на сходимость используем интегральный признак Коши, согласно которому, если члены знакоположительного ряда $\sum_{n=1}^{\infty} a_n$ на множестве натуральных чисел являются значениями непрерывной положительной функции f(x), монотонно убывающей на промежутке $[1; +\infty)$, то ряд сходится или расходится одновременно с несобственным интегралом $\int_{1}^{+\infty} f(x) dx$.

Рассмотрим функцию $f(x) = \frac{1}{\sqrt{x+2}}$ на $[1; +\infty)$. Она непрерывна и положительна на этом промежутке. Значения функции $f(1) = \frac{1}{\sqrt{3}}, \ f(2) = \frac{1}{2}, \ f(3) = \frac{1}{\sqrt{5}}, \dots$, то есть $f(x) = \frac{1}{\sqrt{x+2}}$ монотонно убывает на промежутке $[1; +\infty)$.

Значит, можно применять интегральный признак Коши. Найдем несобственный интеграл:

$$\int_{1}^{+\infty} f(x)dx = \int_{1}^{+\infty} \frac{dx}{\sqrt{x+2}} = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{\sqrt{x+2}} = \lim_{b \to +\infty} 2\sqrt{x+2} \Big|_{1}^{b} = \lim_{b \to +\infty} \left(2\sqrt{b+2} - 2\sqrt{3}\right) = +\infty.$$

Так как несобственный интеграл расходится, то, согласно интегральному признаку Коши, и ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$ расходится.

Ответ: ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$ расходится.

2. Для исследования ряда $\sum_{n=1}^{\infty} \frac{n}{3^n}$ на сходимость используем признак Даламбера, согласно которому, если $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$, то знакоположительный ряд $\sum_{n=1}^{\infty} a_n$ сходится, если q < 1; расходится, если q > 1; требуются дополнительное исследование, если q = 1.

Для данного ряда $a_n = \frac{n}{3^n}$, $a_{n+1} = \frac{n+1}{3^{n+1}}$.

Тогда

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{n+1}{3^{n+1}}}{\frac{n}{3^n}} = \lim_{n \to \infty} \frac{(n+1)3^n}{3^{n+1}n} = \lim_{n \to \infty} \frac{n+1}{3n} =$$

$$= \frac{1}{3} \lim_{n \to \infty} \frac{n+1}{n} = \frac{1}{3} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = \frac{1}{3} < 1.$$

Так как $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1$, то, согласно признаку Даламбера, данный ряд сходится.

Ответ: ряд
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$
 сходится.

Пример выполнения задания 221-230

Дан ряд
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} n}{10^n}$$
. Требуется:

- 1) исследовать его на сходимость (абсолютную, условную) по признаку Лейбница;
- 2) вычислить приближенное значение суммы, взяв три первых члена ряда;
- 3) оценить допускаемую при этом погрешность.

Решение

1) Ряд
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} n}{10^n} = \frac{1}{10} - \frac{2}{100} + \frac{3}{1000} - \frac{4}{10000} + \dots$$
 является знакочередующимся.

Проверим, выполняется ли признак Лейбница, согласно которому, если члены знакочередующегося ряда монотонно убывают по абсолютной величине и предел модуля общего члена ряда при $n \to \infty$ равен нулю, то знакочередующийся ряд сходится.

Члены ряда $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} n}{10^n}$ монотонно убывают по абсолютной величине: $\frac{1}{10} > \frac{2}{100} > \frac{3}{1000} > \frac{4}{10000} > \dots$

Найдем предел модуля общего члена ряда при $n \to +\infty$, используя правило Лопиталя:

$$\lim_{n \to +\infty} \frac{n}{10^n} = \lim_{x \to +\infty} \frac{x}{10^x} = \lim_{x \to +\infty} \frac{x'}{\left(10^x\right)'} = \lim_{x \to +\infty} \frac{1}{10^x \ln 10} = 0.$$

Согласно признаку Лейбница, ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{10^n}$ сходится.

Выясним, как сходится знакочередующийся ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{10^n}$, условно или абсолютно. Рассмотрим ряд, составленный из модулей членов данного ряда:

$$\sum_{n=1}^{\infty} \frac{n}{10^n}.$$

Исследуем его на сходимость по признаку Даламбера:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{n+1}{10^{n+1}}}{\frac{n}{10^n}} = \lim_{n \to \infty} \frac{(n+1)10^n}{10^{n+1}n} = \lim_{n \to \infty} \frac{n+1}{10n} = \frac{1}{10} \lim_{n \to \infty} \frac{n+1}{n} = \frac{1}{10} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = \frac{1}{10} < 1.$$

Так как $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\!<\!1$, то, согласно признаку Даламбера, ряд $\sum_{n=1}^\infty\frac{n}{10^n}$

сходится. Следовательно, знакочередующийся ряд $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} n}{10^n}$ сходится абсолютно.

2. Вычислим приближенное значение суммы ряда, взяв три первых члена:

$$S \approx S_3 = \frac{1}{10} - \frac{2}{100} + \frac{3}{1000} = 0, 1 - 0, 02 + 0, 003 = 0,983.$$

3. Оценим погрешность вычисления.

Если ряд удовлетворяет признаку Лейбница, то его остаток по модулю не превышает абсолютной величины первого члена остатка.

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} n}{10^n} = \frac{1}{10} - \frac{2}{100} + \frac{3}{1000} - \underbrace{\frac{4}{10000} + \frac{5}{100000} + \dots}_{\text{остаток ряда}};$$

$$\left|a_4\right| = \left|-\frac{4}{10000}\right| = 0,0004.$$

Поэтому погрешность вычислений $\delta \leq 0,0004$.

Пример выполнения задания 231-240

Написать первые три члена ряда $\sum_{n=1}^{\infty} \frac{5^n x^n}{n^2 3^n}$, найти его область сходимости.

Решение

Возьмем последовательно $n=1,\,2,\,3,\,\dots$. Тогда данный ряд записывается в виде:

$$\frac{5x}{1^2 \cdot 3} + \frac{5^2 x^2}{2^2 \cdot 3^2} + \frac{5^3 x^3}{3^2 \cdot 3^3} + \dots + \frac{5^n x^n}{n^2 \cdot 3^n} + \dots$$

Это степенной ряд. Для нахождения области сходимости ряда применим признак Даламбера:

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \left| \frac{5^{n+1} x^{n+1} n^2 3^n}{(n+1)^2 3^{n+1} 5^n x^n} \right| = \frac{5}{3} |x| \lim_{n\to\infty} \frac{n^2}{(n+1)^2} = \frac{5}{3} |x|.$$

Данный ряд сходится абсолютно при тех значениях x, которые удовлетворяют неравенству

$$\frac{5}{3}|x| < 1$$
, или $|x| < \frac{3}{5}$, или $-\frac{3}{5} < x < \frac{3}{5}$.

Исследуем сходимость ряда на концах полученного интервала. При $x = -\frac{3}{5}$ данный ряд принимает вид $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$. Последний ряд является

знакочередующимся. Исследуем его по признаку Лейбница:

- 1) абсолютная величина его общего члена стремится к нулю при $n \to \infty$, то есть $\lim_{n \to \infty} \frac{1}{n^2} = 0$;
- 2) члены ряда монотонно убывают по абсолютной величине: $1>\frac{1}{4}>\frac{1}{9}>\dots$

Следовательно, по признаку Лейбница ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ сходится. Зна-

чит, $x = -\frac{3}{5}$ принадлежит области сходимости данного степенного ряда.

При $x = \frac{3}{5}$ данный ряд принимает вид $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Исследуем сходимость

этого ряда при помощи интегрального признака сходимости Коши. Рассмотрим несобственный интеграл:

$$\int_{1}^{+\infty} \frac{dx}{x^{2}} = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{x^{2}} = \lim_{b \to +\infty} \left(-\frac{1}{x} \right) \Big|_{1}^{b} = \lim_{b \to +\infty} \left(-\frac{1}{b} + 1 \right) = 1.$$

Так как несобственный интеграл сходится, то сходится и исследуемый ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Значит, $x = \frac{3}{5}$ принадлежит области сходимости данного степенного ряда.

Таким образом, $-\frac{3}{5} \le x \le \frac{3}{5}$ — область сходимости данного степенного ряда.

OTBET: $\left[-\frac{3}{5}; \frac{3}{5}\right]$.

Пример выполнения здания 241-250

Решить задачу: для сигнализации об аварии установлены три независимо работающих сигнализатора. Вероятность того, что при аварии сигнализатор сработает, равна 0,9 для первого, 0,8 для второго и 0,7 для третьего. Найти вероятность того, что при аварии:

- а) сработает только один сигнализатор;
- б) сработает хотя бы один сигнализатор;
- в) все три сигнализатора сработают.

Решение

а) Обозначим события:

A — сработает только один сигнализатор;

 A_i — i-й сигнализатор сработает, где i = 1, 2, 3.

Тогда $\overline{A_i}$ — *i*-й сигнализатор не сработает, где i = 1, 2, 3.

По условию
$$P(A_1) = 0.9$$
, $P(A_2) = 0.8$, $P(A_3) = 0.7$.

Тогда по формуле вероятности противоположного события:

$$P(\overline{A}) = 1 - P(A)$$

имеем

$$P(\overline{A_1}) = 0.1$$
, $P(\overline{A_2}) = 0.2$, $P(\overline{A_3}) = 0.3$.

Событие A можно представить в виде:

$$A = A_1 \overline{A_2} \overline{A_3} + \overline{A_1} A_2 \overline{A_3} + \overline{A_1} \overline{A_2} A_3.$$

Используя формулы вероятности суммы несовместных событий и вероятности произведения независимых событий:

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n),$$

$$P(A_1 A_2 ... A_n) = P(A_1) P(A_2) ... P(A_n),$$

получим вероятность события A:

$$P(A) = P(A_1 \overline{A_2} \overline{A_3}) + P(\overline{A_1} A_2 \overline{A_3}) + P(\overline{A_1} \overline{A_2} A_3) =$$

$$= P(A_1) P(\overline{A_2}) P(\overline{A_3}) + P(\overline{A_1}) P(A_2) P(\overline{A_3}) + P(\overline{A_1}) P(\overline{A_2}) P(A_3) =$$

$$= 0.9 \cdot 0.2 \cdot 0.3 + 0.1 \cdot 0.8 \cdot 0.3 + 0.1 \cdot 0.2 \cdot 0.7 = 0.092.$$

$$P(A) = 0.092.$$

б) Пусть событие B — сработает хотя бы один сигнализатор.

Рассмотрим событие \overline{B} — все три сигнализатора не сработают, которое является противоположным к событию B:

$$\overline{B} = \overline{A_1} \ \overline{A_2} \ \overline{A_3}$$
.

Используя формулы вероятности противоположного события и вероятности произведения независимых событий, получим вероятность события B:

$$P(B) = 1 - P(\overline{B}) = 1 - P(\overline{A_1} \overline{A_2} \overline{A_3}) = 1 - P(\overline{A_1})P(\overline{A_2})P(\overline{A_3}) = 1 - 0.1 \cdot 0.2 \cdot 0.3 = 0.994.$$

в) Пусть событие C — все три сигнализатора срабатывают, т.е. $C = A_1 A_2 A_3 \, .$

По формуле вероятности произведения независимых событий:

$$P(C) = P(A_1)P(A_2)P(A_3) = 0.9 \cdot 0.8 \cdot 0.7 = 0.504$$
.

Пример выполнения задания 251-260

Дана вероятность p = 0.8 появления события A в каждом из 100 независимых испытаний. Найти вероятность того, что в этих испытаниях событие A появится не менее 75 раз и не более 90 раз.

Решение

По условию:
$$n=100$$
, $p=0.8$, $q=1-p=1-0.8=0.2$, $k_1=75$, $k_2=90$.

Найдем вероятность P_{100} (75, 90).

Так как n большое, воспользуемся интегральной теоремой Муавра-Лапласа:

$$P_n(k_1, k_2) \approx \Phi(x_2) - \Phi(x_1).$$

Вычислим x_1 и x_2 :

$$x_{1} = \frac{k_{1} - np}{\sqrt{npq}} = \frac{75 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = -1.25,$$

$$x_{2} = \frac{k_{2} - np}{\sqrt{npq}} = \frac{90 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = -2.5.$$

Тогда

$$P_{100}(75, 90) \approx \Phi(2,5) - \Phi(-1,25) \approx \Phi(2,5) + \Phi(1,25).$$

Найдем $\Phi(1,25)$, $\Phi(2,5)$ по таблице значений функции:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
:

$$\Phi(1,25) \approx 0.3944$$

$$\Phi(2,5) \approx 0,4938.$$

Тогда искомая вероятность

$$P_{100}(75, 90) \approx 0,4938 + 0,3944 \approx 0,8882$$
.

Ответ: 0,8882.

Пример выполнения задания 261-270

Случайная величина X задана рядом распределения (табл. 32):

Таблица 32. Ряд распределения с.в. Х

X	-1	6	13	20	27
P	0,2	0,1	0,4	0,2	0,1

Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X.

Решение

1. Математическое ожидание дискретной с. в. X найдем по формуле

$$M(X) = \sum_{i=1}^{n} x_i p_i.$$

Получим:

$$M(X) = \sum_{i=1}^{n} x_i p_i = -1 \cdot 0, 2 + 6 \cdot 0, 1 + 13 \cdot 0, 4 + 20 \cdot 0, 2 + 27 \cdot 0, 1 = 12, 3.$$

2. Дисперсию с. в. Х найдем по формуле

$$D(X) = M(X^{2}) - (M(X))^{2}.$$

Составим ряд распределения с. в. X^2 . Для этого возможные значения с. в. X возведем в квадрат, а соответствующие вероятности оставим такими же (табл. 33).

Tаблица 33. Pяд распределения c.в. X^2

X^2	1	36	169	400	729
P	0,2	0,1	0,4	0,2	0,1

Найдем математическое ожидание с.в. X^2 :

$$M(X^2) = 1 \cdot 0, 2 + 36 \cdot 0, 1 + 169 \cdot 0, 4 + 400 \cdot 0, 2 + 729 \cdot 0, 1 = 224, 3.$$

Тогда

$$D(X) = 224,3 - (12,3)^2 = 224,3 - 151,29 = 73,01.$$

3. Вычислим среднее квадратическое отклонение с.в. X:

$$\sigma(X) = \sqrt{D(X)} = \sqrt{73,01} \approx 8.5.$$

Ответ:
$$M(X) = 12,3$$
, $D(X) = 73,01$, $\sigma(X) = \sqrt{73,01} \approx 8,5$.

Пример выполнения задания 271-280

Случайная величина X задана интегральной функцией распределения

$$F(x) = \begin{cases} 0 & \text{при } x < 0, \\ x^3 & \text{при } 0 \le x \le 1, \\ 1 & \text{при } x > 1. \end{cases}$$

Найти:

- 1) дифференциальную функцию f(x) (плотность вероятности);
- 2) математическое ожидание M(X);
- 3) дисперсию D(X);
- 4) построить графики функций F(x) и f(x).

Решение

1) Дифференциальную функцию распределения f(x) непрерывной с. в. X найдем по формуле

$$f(x) = F'(x).$$

Получим:

$$f(x) = F'(x) = \begin{cases} 0 & \text{при } x < 0, \\ 3x^2 & \text{при } 0 \le x \le 1, \\ 0 & \text{при } x > 1. \end{cases}$$

2. Математическое ожидание непрерывной с. в. X найдем по формуле

$$M(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

Так как функция f(x) при x < 0 и при x > 1 равна нулю, то имеем:

$$M(X) = \int_{0}^{1} x f(x) dx = \int_{0}^{1} x \cdot 3x^{2} dx = \frac{3x^{4}}{4} \Big|_{0}^{1} = \frac{3}{4}.$$

3) Дисперсию D(X) определим по формуле

$$D(X) = M(X^{2}) - (M(X))^{2}.$$

Найдем математическое ожидание $M\left(X^{2}\right)$ по формуле

$$M(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx$$
.

Так как функция f(x) при x < 0 и при x > 1 равна нулю, то имеем:

$$M(X^2) = \int_0^1 x^2 f(x) dx = \int_0^1 x^2 \cdot 3x^2 dx = \frac{3x^5}{5} \Big|_0^1 = \frac{3}{5}.$$

Тогда

$$D(X) = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = \frac{3}{5} - \frac{9}{16} = \frac{3}{80}.$$

4. Построим графики функций F(x) и f(x) (рис. 14, 15):

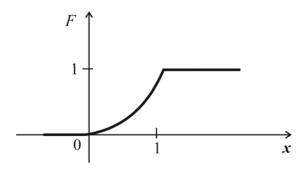


Рис. 14. График функции y = F(x)

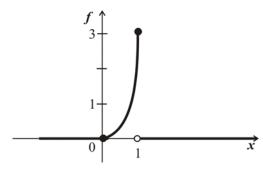


Рис. 15. График функции y = f(x)

Пример выполнения задания 281-290

Дана выборка значений нормально распределенного признака X (в первой строке таблицы 34 указаны значения признака x_i , во второй — соответствующие им частоты n_i).

Tаблица 34. Tаблица частот случайной величины X

X_i	20	30	40	50	60	70	80
n_{i}	4	11	25	30	15	10	5

Найти:

- 1) выборочную среднюю x;
- 2) выборочную дисперсию $D_{\scriptscriptstyle B}$;
- 3) исправленное выборочное среднее квадратическое отклонение s.

Решение

- 1. Составим расчетную таблицу, для чего:
- а) запишем варианты x_i в первый столбец, частоты n_i во второй столбец;
- б) в качестве «ложного нуля» C берем варианту 50 (она имеет наибольшую частоту); в клетке третьего столбца, которая принадлежит строке, содержащей варианту 50, пишем 0; над нулем последовательно записываем условные варианты -1, -2, -3, а под нулем — последовательно 1, 2, 3;
- в) в четвертый столбец записываем произведения частот n_i на условные варианты u_i , то есть $n_i u_i$; находим сумму этих произведений и записываем ее в нижнюю клетку столбца;
- г) в пятый столбец записываем произведения частот n_i на квадраты условных вариант u_i^2 , то есть $n_i u_i^2$; сумму чисел столбца помещаем в его нижнюю клетку;
- д) в шестой (контрольный) столбец записываем произведения $n_i(u_i+1)^2$; сумму чисел столбца помещаем в его нижнюю клетку.

В итоге получаем расчетную таблицу 35.

X_i	n_i	u_{i}	$n_i u_i$	$n_i u_i^2$	$n_i(u_i+1)^2$
20	4	-3	-12	36	16
30	11	-2	-22	44	11
40	25	-1	-25	25	0
50	30	0	0	0	30
60	15	1	15	15	60
70	10	2	20	40	90
80	5	3	15	45	80
	n = 100		$\sum n_i u_i = -9$	$\sum n_i u_i^2 = 205$	$\sum n_i (u_i + 1)^2 = 287$

Таблица 35. Расчетная таблица

Контроль:

$$\sum n_i u_i^2 + 2\sum n_i u_i + n = 205 - 18 + 100 = 287.$$
$$\sum n_i (u_i + 1)^2 = 287.$$

Совпадение найденных сумм свидетельствует о том, что вычисления произведены правильно.

Вычислим условные моменты первого и второго порядков:

$$M_1 = \frac{\sum n_i u_i}{n} = \frac{-9}{100} = -0.09;$$

 $M_2 = \frac{\sum n_i u_i^2}{n} = \frac{205}{100} = 2.05.$

Найдем шаг h (разность между двумя соседними вариантами):

$$h = 30 - 20 = 10$$
.

Найдем выборочную среднюю:

$$\overline{x} = M_1 h + C = -0.09 \cdot 10 + 50 = 49.1.$$

2. Найдем выборочную дисперсию:

$$D_{6} = (M_{2} - M_{1}^{2}) \cdot h^{2} = (2.05 - (-0.09)^{2}) \cdot 10^{2} = 204.19$$
.

Найдем исправленную дисперсию:

$$s^2 = \frac{n}{n-1}D_e = \frac{100}{99} \cdot 204{,}19 \approx 206{,}25.$$

3. Найдем исправленное среднее квадратическое отклонение:

$$s = \sqrt{206,25} \approx 14,36$$
.

Ответ: $\bar{x} = 49,1$, $D_{e} = 204,19$, $s = \sqrt{206,25} \approx 14,36$.

СПИСОК РЕКОМЕНДУЕМЫХ ИСТОЧНИКОВ

Основная литература

- 1. Марусич, А.И. Математика [Текст] : учебник для с.-х. вузов / А.И. Марусич. Караваево : Костромская ГСХА, 2014. 218 с.
- 2. Математика [Текст] : учеб. пособие для вузов / ред. Л.Н. Журбенко, Ю.М. Данилов. М. : ИНФРА-М, 2013. 496 с. (Высшее образование: Бакалавриат).
- 3. Шипачев, В.С. Высшая математика. Полный курс [Текст] : учебник для бакалавров / В.С. Шипачев. 4-е изд., испр. и доп. М. : Юрайт, 2013. 607 с. (Бакалавр. Базовый курс).

Дополнительная литература

- 4. Бараненков, А.И. Сборник задач и типовых расчетов по высшей математике [Текст] : учеб. пособие / А.И. Бараненков, Е.П. Богомолова. СПб. : Лань, 2009. 240 с. : ил. (Учебники для вузов. Специальная литература).
- 5. Берман, Г.Н. Сборник задач по курсу математического анализа. Решение типичных и трудных задач [Текст] : учеб. пособие / Г.Н. Берман. 2-е изд., стер. СПб. : Лань, 2006. 608 с. : ил. (Учебники для вузов. Специальная литература).
- 6. Математика. Кратные интегралы [Текст] : учеб. пособие для студентов направления подготовки 140400.62, 110800.62, 270800.62, 190109.65 очной формы обучения / И.А. Батманова, И.Н. Позднякова. 2-е изд., перераб. Караваево : Костромская ГСХА, 2014. 56 с.
- 7. Математика. Подготовка к тестированию [Текст] : учеб.-метод. пособие для студентов всех специальностей и направлений подготовки очной формы обучения / И.А. Батманова, И.А.Смурова. 2-е изд., перераб. Караваево : Костромская ГСХА, 2014. 80 с.
- 8. Математика. Элементы линейной алгебры: в 2 ч. Ч. 1 [Текст]: учеб.-метод. пособие для студентов всех спец. очной и заочной форм обучения / Н.М. Воробьева; Л.Б. Рыбина. Кострома: КГСХА, 2010. 58 с.
- 9. Письменный, Д.Т. Конспект лекций по высшей математике: в 2 ч. Ч. 1 [Текст] / Д.Т. Письменный. 6-е изд. М. : Айрис-пресс, 2011. 288 с. : ил. (Высшее образование).
- 10. Практикум и индивидуальные задания по курсу теории вероятностей (типовые расчеты) [Текст]: учеб. пособие для вузов / В.А. Болотюк [и др.]. СПб.: Лань, 2010. 288 с.: ил. (Учебники для вузов. Специальная литература).
- 11. Привалов, И.И. Аналитическая геометрия [Текст]: учебник для вузов / И.И. Привалов. 35-е изд., стер. СПб.: Лань, 2005. 304 с.: ил. (Учебники для вузов. Специальная литература).

12. Бородин, А.Н. Элементарный курс теории вероятностей и математической статистики [Текст] : учебное пособие для вузов / А.Н. Бородин. — 7-е изд., стер. — СПб. : Лань, 2008. — 256 с.

Использованная литература

- 13. Высшая математика [Текст] : методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей сельскохозяйственных высших учебных заведений / Д.Т. Штейнгардт. М. : Высш. шк., 1967. 124 с. : ил.
- 14. Высшая математика [Текст] : программа, методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей сельскохозяйственных высших учебных заведений / Д.Т. Штейнгардт. 2-е изд. М. : Высш. шк., 1979. 128 с. : ил.
- 15. Комплексные числа : учебное пособие по математике для студентов всех специальностей очной и заочной форм обучения / сост. А.И. Марусич. Кострома : КГСХА, 2007. 22 с.
- 16. Основы высшей математики [Текст] : методические указания и контрольные задания для студентов-заочников сельскохозяйственных специальностей высших учебных заведений / Д.Т. Штейнгардт, Н.В. Крылов. 6-е изд. М. : Высш. шк., 1987. 88 с. : ил.
- 17. Шапкин, А.С. Задачи по высшей математике, теории вероятностей, математической статистике, математическому программированию с решениями [Текст]: учебное пособие / А.С. Шапкин. М.

приложения

Приложение 1

Правила и формулы дифференцирования

Функция простого аргумента	Сложная функция
$\left(x^{n}\right)'=nx^{n-1}$	$\left(u^{n}\right)'=nu^{n-1}u'$
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$\left(\sqrt{u}\right)' = \frac{1}{2\sqrt{u}} \cdot u'$
$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$\left(\frac{1}{u}\right)' = -\frac{1}{u^2} \cdot u'$
$\left(a^{x}\right)' = a^{x} \ln a$	$\left(a^{u}\right)'=a^{u}\ln a\cdot u'$
$\left(e^{x}\right)'=e^{x}$	$(e^u)'=e^u\cdot u'$
$\left(\log_a x\right)' = \frac{1}{x \ln a}$	$\left(\log_a u\right)' = \frac{1}{u \ln a} \cdot u'$
$\left(\ln x\right)' = \frac{1}{x}$	$\left(\ln u\right)' = \frac{1}{u} \cdot u'$
$(\sin x)' = \cos x$	$(\sin u)' = \cos u \cdot u'$
$(\cos x)' = -\sin x$	$(\cos u)' = -\sin u \cdot u'$
$\left(\operatorname{tg}x\right)' = \frac{1}{\cos^2 x}$	$\left(\operatorname{tg} u\right)' = \frac{1}{\cos^2 u} \cdot u'$
$\left(\operatorname{ctg}x\right)' = -\frac{1}{\sin^2 x}$	$\left(\operatorname{ctg} u\right)' = -\frac{1}{\sin^2 u} \cdot u'$
$\left(\arcsin x\right)' = \frac{1}{\sqrt{1-x^2}}$	$\left(\arcsin u\right)' = \frac{1}{\sqrt{1 - u^2}} \cdot u'$
$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u'$
$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$ $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$	$\left(\operatorname{arctg} u\right)' = \frac{1}{1+u^2} \cdot u'$
$\left(\operatorname{arcctg} x\right)' = -\frac{1}{1+x^2}$	$\left(\operatorname{arcctg} u\right)' = -\frac{1}{1+u^2} \cdot u'$
Основные правила д	дифференцирования
C'=0	(u+v)' = u'+v'
(Cu)' = Cu'	(u-v)'=u'-v'
(uv)' = u'v + uv'	$(u+v)' = u'+v'$ $(u-v)' = u'-v'$ $\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$

Таблица неопределенных интегралов

1.
$$\int u^a du = \frac{u^{a+1}}{a+1} + C(a \neq -1)$$

$$2. \int du = u + C$$

$$3. \int \frac{du}{u} = \ln|u| + C$$

$$4. \int a^u du = \frac{a^u}{\ln a} + C$$

$$5. \int e^u du = e^u + C$$

$$6. \int \sin u du = -\cos u + C$$

7.
$$\int \cos u du = \sin u + C$$

$$8. \int \frac{du}{\sin^2 u} = -ctgu + C$$

$$9. \int \frac{du}{\cos^2 u} = tg \ u + C$$

10.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$

$$10.1. \int \frac{du}{\sqrt{1-u^2}} = \arcsin u + C$$

11.
$$\int \frac{du}{\sqrt{u^2 \pm a^2}} = \ln \left| u + \sqrt{u^2 \pm a^2} \right| + C$$

12.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \operatorname{arctg} \frac{u}{a} + C$$

$$12.1. \int \frac{du}{1+u^2} = arctgu + C$$

13.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C$$

Дополнительные формулы

$$1. \int tgudu = -\ln\left|\cos u\right| + C$$

3.
$$\int \frac{du}{\sin u} = \ln \left| \lg \frac{u}{2} \right| + C$$

$$2. \int ctgudu = \ln|\sin u| + C$$

4.
$$\int \frac{du}{\cos u} = \ln \left| \operatorname{tg} \left(\frac{u}{2} + \frac{\pi}{2} \right) \right| + C$$

Значения функции
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

x	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	3653	3637	3621	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
3,0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0033	0032	0031	0030	0029	0028	0027	0026	0025	0025
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009
3,5	0009	8000	0008	0008	0008	0007	0007	0007	0007	0006
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	0004
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001

Значения функции
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{z^2}{2}} dz$$

x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
1	2	3	4	5	6	7	8
0,00	0,0000	0,40	0,1554	0,80	0,2881	1,20	0,3849
0,01	0,0040	0,41	0,1591	0,81	0,2910	1,21	0,3869
0,02	0,0080	0,42	0,1628	0,82	0,2939	1,22	0,3883
0,03	0,0120	0,43	0,1664	0,83	0,2967	1,23	0,3907
0,04	0,0160	0,44	0,1700	0,84	0,2995	1,24	0,3925
0,05	0,0199	0,45	0,1736	0,85	0,3023	1,25	0,3944
0,06	0,0239	0,46	0,1772	0,86	0,3051	1,26	0,3962
0,07	0,0279	0,47	0,1808	0,87	0,3078	1,27	0,3980
0,08	0,0319	0,48	0,1844	0,88	0,3106	1,28	0,3997
0,09	0,0359	0,49	0,1879	0,89	0,3133	1,29	0,4015
0,10	0,0398	0,50	0,1915	0,90	0,3159	1,30	0,4032
0,11	0,0438	0,51	0,1950	0,91	0,3186	1,31	0,4049
0,12	0,0478	0,52	0,1985	0,92	0,3212	1,32	0,4066
0,13	0,0517	0,53	0,2019	0,93	0,3238	1,33	0,4082
0,14	0,0557	0,54	0,2054	0,94	0,3264	1,34	0,4099
0,15	0,0596	0,55	0,2088	0,95	0,3289	1,35	0,4115
0,16	0,0636	0,56	0,2123	0,96	0,3315	1,36	0,4131
0,17	0,0675	0,57	0,2157	0,97	0,3340	1,37	0,4147
0,18	0,0714	0,58	0,2190	0,98	0,3365	1,38	0,4162
0,19	0,0753	0,59	0,2224	0,99	0,3389	1,39	0,4177
0,20	0,0793	0,60	0,2257	1,00	0,3413	1,40	0,4192
0,21	0,0832	0,61	0,2291	1,01	0,3438	1,41	0,4207
0,22	0,0871	0,62	0,2324	1,02	0,3461	1,42	0,4222
0,23	0,0910	0,63	0,2357	1,03	0,3485	1,43	0,4236
0,24	0,0948	0,64	0,2389	1,04	0,3508	1,44	0,4251
0,25	0,0987	0,65	0,2422	1,05	0,3531	1,45	0,4265
0,26	0,1026	0,66	0,2454	1,06	0,3554	1,46	0,4279
0,27	0,1064	0,67	0,2486	1,07	0,3577	1,47	0,4292
0,28	0,1103	0,68	0,2517	1,08	0,3599	1,48	0,4306
0,29	0,1141	0,69	0,2549	1,09	0,3621	1,49	0,4319
0,30	0,1179	0,70	0,2580	1,10	0,3643	1,50	0,4332
0,31	0,1217	0,71	0,2611	1,11	0,3665	1,51	0,4345
0,32	0,1255	0,72	0,2642	1,12	0,3686	1,52	0,4357
0,33	0,1293	0,73	0,2673	1,13	0,3708	1,53	0,4370
0,34	0,1331	0,74	0,2703	1,14	0,3729	1,54	0,4382
0,35	0,1368	0,75	0,2734	1,15	0,3749	1,55	0,4394
0,36	0,1406	0,76	0,2764	1,16	0,3770	1,56	0,4406
0,37	0,1443	0,77	0,2794	1,17	0,3790	1,57	0,4418
0,38	0,1480	0,78	0,2823	1,18	0,3810	1,58	0,4429
0,39	0,1517	0,79	0,2852	1,19	0,3830	1,59	0,4441

Окончание приложения 4

1	2	3	4	5	6	7	8
1,60	0,4452	1,85	0,4678	2,20	0,4861	2,70	0,4965
1,61	0,4463	1,86	0,4686	2,22	0,4868	2,72	0,4967
1,62	0,4474	1,87	0,4693	2,24	0,4875	2,74	0,4969
1,63	0,4484	1,88	0,4699	2,26	0,4881	2,76	0,4971
1,64	0,4495	1,89	0,4706	2,28	0,4887	2,78	0,4973
1,65	0,4505	1,90	0,4713	2,30	0,4893	2,80	0,4974
1,66	0,4515	1,91	0,4719	2,32	0,4898	2,82	0,4976
1,67	0,4525	1,92	0,4726	2,34	0,4904	2,84	0,4977
1,68	0,4535	1,93	0,4732	2,36	0,4909	2,86	0,4979
1,69	0,4545	1,94	0,4738	2,38	0,4913	2,88	0,4980
1,70	0,4554	1,95	0,4744	2,40	0,4918	2,90	0,4981
1,71	0,4564	1,96	0,4750	2,42	0,4922	2,92	0,4982
1,72	0,4573	1,97	0,4756	2,44	0,4927	2,94	0,4984
1,73	0,4582	1,98	0,4761	2,46	0,4931	2,96	0,4985
1,74	0,4591	1,99	0,4767	2,48	0,4934	2,98	0,4986
1,75	0,4599	2,00	0,4772	2,50	0,4938	3,00	0,49865
1,76	0,4608	2,02	0,4783	2,52	0,4941	3,20	0,49931
1,77	0,4616	2,04	0,4793	2,54	0,4945	3,40	0,49966
1,78	0,4625	2,06	0,4803	2,56	0,4948	3,60	0,499841
1,79	0,4633	2,08	0,4812	2,58	0,4951	3,80	0,499928
1,80	0,4641	2,10	0,4821	2,60	0,4953	4,00	0,499968
1,81	0,4649	2,12	0,4830	2,62	0,4956	4,50	0,499997
1,82	0,4656	2,14	0,4838	2,64	0,4959	5,00	0,49999997
1,83	0,4664	2,16	0,4846	2,66	0,4961	∞	0,5
1,84	0,4671	2,18	0,4854	2,68	0,4963		

Титульный лист контрольной работы

Министерство сельского хозяйства Российской Федерации Департамент научно-технологической политики и образования Федеральное государственное бюджетное образовательное учреждение высшего образования

		высшего образован	ия
«Ko	эстромская гос	ударственная сельскох	озяйственная академия»
Н	lаправление	подготовки 35.03.06	б «Агроинженерия»
Ф	акультет		
	Кас	федра «Высшая мато	ематика»
	КОН	НТРОЛЬНАЯ РАБО	TA №
	по ді	исциплине «MATEN	ИАТИКА»
ыполнил: гудент			
	курс	группа	подпись
		Ф.И.О.	
роверил:			
реподавателн		цолжность	подпись
		Ф.И.О.	

Караваево 20__

Учебно-методическое издание

Математика: учебно-методическое пособие по организации самостоятельной и аудиторной работы и выполнению контрольных работ 1-3 для студентов 1 и 2 курсов направления подготовки 35.03.06 «Агроинженерия» заочной формы обучения / сост. Л.Б. Рыбина, И.А. Батманова. — Караваево: Костромская ГСХА, 2015. — 116 с.

Гл. редактор Н.В. Киселева Редактор выпуска Т.В. Тарбеева Корректор Т.В. Кулинич

© Федеральное государственное бюджетное образовательное учреждение высшего образования "Костромская государственная сельскохозяйственная академия" 156530, Костромская обл., Костромской район, пос. Караваево, уч. городок, д. 34, КГСХА

Компьютерный набор. Подписано в печать 28/09/2015. Заказ №861. Формат 84х60/16. Тираж 100 экз. Усл. печ. л. 7,2. Бумага офсетная. Отпечатано 05/11/2015. Цена 70,00 руб.

 Цена 70,00 руб.

2015*861