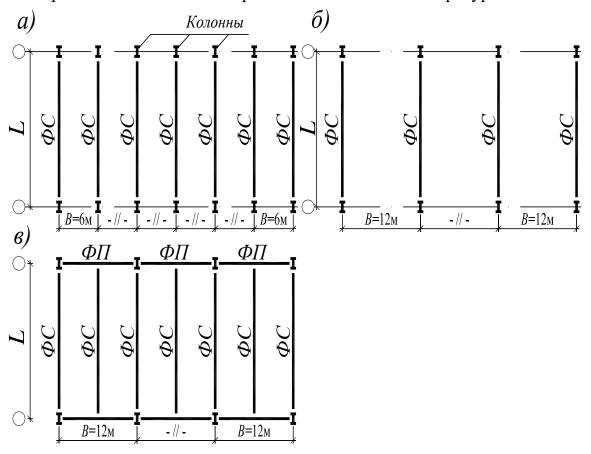
ПОПЕРЕЧНАЯ РАМА ОДНОЭТАЖНОГО ПРОИЗВОДСТВЕННОГО ЗДАНИЯ

1. Рекомендации по выбору конструктивной и расчетной схемы каркаса

Проектирование каркаса производственного здания начинается с выбора и компоновки его конструктивной схемы. При компоновке конструктивной схемы каркаса в зависимости от назначения здания разбивается сетка колонн, выбирается схема поперечной рамы, устанавливаются внутренние габариты здания, назначаются генеральные размеры основных конструктивных элементов рамы, решается система связей по колоннам и конструкциям покрытия.

Основой поперечной системы каркаса является поперечная рама. Для стальных каркасов производственных зданий за основной тип принимается рама со ступенчатыми колоннами, жестко защемленными в фундаменте, и ригелем в виде стропильных ферм.

Сопряжение колонн с ригелями следует назначать шарнирным или жестким в зависимости от числа пролетов здания, высоты здания, характеристик кранов и грунтов. Для однопролетных зданий жесткое сопряжение обычно рекомендуется при наличии мостовых кранов групп режимов работы 7К и 8К («особого режима») или грузоподъемностью кранов 100 т и более независимо от режима работы, при двухярусном расположении кранов, а также при высоте здания H > 18 м, пролете L > 36 м и соотношении H/L > 1,5 независимо от наличия кранов.


Верхнюю (надкрановую) часть колонны обычно проектируют сплошного двутаврового сечения; нижнюю (подкрановую) принимают сплошной при ширине до 1 м включительно, а при большей ширине проектируют сквозной. При малоуклонных кровлях применяют фермы трапецеидального очертания (уклон i=1/8-1/12) и с параллельными поясами (i=0,015-0,025). В неотапливаемых зданиях возможен вариант применения в качестве ригеля треугольной фермы с уклоном верхнего пояса i=1/3,5 для покрытия из волнистых асбоцементных листов.

Покрытия применяются прогонные или беспрогонные. В качестве прогонов, устанавливаемых на верхние пояса стропильных ферм, применяются прокатные балки, гнутые профили, легкие решетчатые конструкции (при шаге ферм больше 6 м). В беспрогонном покрытии применяются крупнопанельные железобетонные плиты шириной 3 м, пролетом 6 и 12 м, а также металлические панели.

1.1. Разбивка сетки колонн

Размещение колонн в плане производится с учетом технологических, конструктивных и экономических факторов согласно требованиям «Основные положения по унификации объемно-планировочных и конструктивных решений промышленных зданий» (СН 223-62*). Оно должно быть увязано с габаритами и расположением технологического оборудования, направлением грузопотоков. Колонны размещаются так, чтобы вместе с ригелями они образовывали поперечные рамы, т.е. в многопролетных цехах колонны разных рядов устанавливаются по одной оси. Расстояния между колоннами поперек здания (размеры пролетов) и в продольном направлении (шаг колонн) назначаются в соответствии с укрупненным модулем, кратным 6 м (рис. 1).

Здание большой длины согласно нормам разрезается на отдельные блоки поперечными температурными швами для уменьшения дополнительных напряжений в элементах каркаса от колебания температуры.

Рис. 1. Возможные варианты компоновки конструктивной схемы здания: a – вариант 1 (B = 6 м); δ – вариант 2 (B = 12 м); ϵ – вариант 3 (B = 12 м с применением подстропильных ферм)

Наибольшие расстояния между температурными швами стальных каркасов одноэтажных зданий, при которых температурные воздействия не учитываются в расчетах, принимаются по табл. 1.

Предельные размеры температурных блоков зданий

	Наибольшее расстояние, м							
Здание	• •	швами е блока	от темпер шва или здания ближайше кальной с	и торца до оси ей верти-	связей в одном			
	в климатических районах строительства с расчетной температурой, °C							
	$t \ge -40$	t < -40	$t \ge -40$	t < -40	$t \ge -40$	t < -40		
Отапливаемое	230	160	90	60	40 – 50	40		
Неотапливаемое	200	140	75	50	40 – 50	40		
и горячие цехи								

Температурный шов устраивается на спаренных колоннах, геометрические оси которых смещаются от разбивочной оси на 500 мм в каждую сторону. На такую же величину смещаются геометрические оси колонн у торцов здания для возможности использования типовых ограждающих плит и панелей с номинальной длиной 6 или 12 м.

В сейсмических районах строительства длина сейсмического отсека здания не должна превышать: в зданиях с расчетной сейсмикой 7 баллов – 144 м; 8 баллов – 120 м; 9 баллов – 96 м.

1.2. Компоновка однопролетной рамы производственного здания

Компоновку поперечной рамы начинают с установления ее генеральных габаритных размеров и основных размеров элементов конструкций, входящих в состав рамы.

Размеры по вертикали привязывают к отметке уровня чистого пола, принимая ее нулевой, размеры по горизонтали – к продольным осям здания.

Генеральные размеры здания: пролет L, высота H_1 до уровня головки кранового рельса и полезная высота здания H_0 назначаются в зависимости от габаритов оборудования (в том числе кранового) и характера технологического процесса в цехе.

Высота от головки кранового рельса до низа несущей конструкции покрытия H_2 обусловлена крановым габаритом над головкой рельса H_{κ} (справочные данные по мостовым кранам приведены в табл. 2).

Справочные данные по мостовым кранам нормального режима работы** (для учебного проектирования)

Грузо-	Про	Размеры, мм				иение иеса	Вес те-	Das	Тип	Вы-	
подъем ем- ность, Q^* , т	лет зда- ния <i>L</i> , м	H_k	B_1	B_2	К	<i>Fк</i> _{1,} кН	<i>Fк</i> _{2,} кН	ле- жки <i>G</i> _T , кН	Вес крана <i>G</i> , кН	рельса и его вес, кН/м	сота ре- льса, мм
32/5	24 30 36	2750 2750 3000	300	6300 6300 6860	5100 5100 5600	315 345 380	_	120	520 620 740	KP-70 0,53	120
50/12,5	24 30 36	3150	300	6760	5250	470 500 540	_	180	665 780 900	KP-80 0,64	130
80/20	24 30 36	3700 4000 4000	400	9100	4350	350 380 410	370 400 430	380	1100 1300 1500	KP- 100 0,89	150
100/20	24 30 36	3700 4000 4000	400	9350	4600	410 450 490	450 480 510	410	1250 1450 1650	KP- 120 1,18	170
125/20	24 30 36	4000	400	9350	4600	480 520 550	520 550 580	430	1360 1550 1750	KP- 120 1,18	170
160/32	24 30 36	4800	500	10500	1500	310 330 350	330 350 370	650	1750 1950 2200	KP- 120 1,18	170
200/32	24 30 36	4800 4800 5200	500	10800	1500	370 400 420	380 410 430	700	1650 2150 2450	KP- 120 1,18	170

^{*} Q – грузоподъемность крана (числитель на большом крюке, знаменатель – на малом).

Пример 1. Выполнить компоновку поперечной рамы однопролетного производственного здания пролетом L=30 м с шагом колонн B=12 м, оборудованного двумя электрическими мостовыми кранами грузоподъемностью Q=100/20 т режима работы 5К (среднего режима работы).

Отметка головки кранового рельса $H_1 = 15,4$ м.

Принимаем раму, состоящую из ступенчатых колонн и ригеля в виде стропильной фермы с параллельными поясами и уклоном верхнего пояса i = 0.025 (рис. 2).

Устанавливаем вертикальные размеры.

^{}** Краны других режимов работы: см: ГОСТ 25711-83, ГОСТ 67-81.

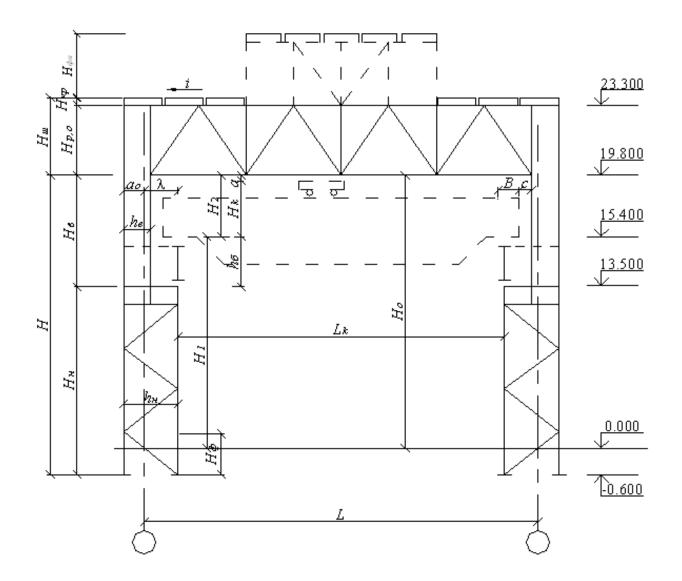


Рис. 2. Схема поперечной рамы

Расстояние от головки кранового рельса до низа фермы

$$H_2 = H_{\rm K} + 100 + a = 4000 + 100 + 300 = 4400$$
 mm,

где H_k – высота от головки кранового рельса до верхней части тележки;

100 мм – зазор, устанавливаемый техническими условиями эксплуатации кранов;

a — зазор, учитывающий прогиб фермы по нижнему поясу и размеры выступающих вниз частей элементов связей с учетом их прогиба (принимается 200-400 мм).

Для соблюдения условий унификации размер H_2 принимается кратным 200 мм.

Полная высота цеха от уровня пола до низа стропильной фермы

$$H_0 = H_1 + H_2 = 15400 + 4400 = 19800$$
 mm.

Размер H_0 принимается кратным 0,6 м, при большой высоте может использоваться укрупненный модуль 1,2 и 1,8 м. Унификация производится за счет изменения H_1 в большую сторону.

Высота верхней части колонны

$$H_6 = H_2 + h_6 + h_p = 4400 + 1700 + 200 = 6300 \text{ MM},$$

где $h_{\tilde{0}} = B/7 = 12000 / 7 \approx 1700$ мм, принимается по табл. 6.3; $h_{D} = 200$ мм — высота кранового рельса с подкладками.

Высота нижней части колонны

$$H_{H} = H_{0} - H_{G} + H_{D} = 19800 - 6300 + 600 = 14100 \text{ mm},$$

где $H_{\phi} = 500 - 800$ мм – заглубление опорной плиты базы колонны ниже нулевой отметки пола.

Высота колонны

$$H = H_H + H_\theta = 14100 + 6300 = 20400$$
 mm.

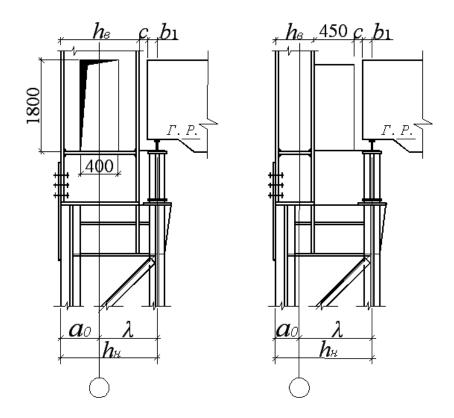
Высота ригеля у опоры $H_{p,o} = 3150$ мм при применении типовых стропильных ферм с элементами из парных уголков с уклоном верхнего пояса i = 0.025.

Основные размеры элементов подкрановых балок

Таблица 3

Грузоподъемность	Высота	балки h_b	Ширина опорного ребра b_p , мм		
крана, т	при шаге	при шаге	при шаге	при шаге	
	колонн	колонн	колонн	колонн	
	B = 6 M	B = 12 M	B = 6 M	B = 12 M	
20/5	1/7 B	1/9 <i>B</i>	250	280	
32/5	1/7 B	1/9 <i>B</i>	320	320	
50/12,5	1/6 B	1/8,5 <i>B</i>	320	320	
80/20	1/6 B	1/7,5 <i>B</i>	360	360	
100/20	1/6 B	1/7 B	360	360	
125/20	1/6 B	1/7 B	360	400	
160/32	1/6 B	1/7 B	360	400	
200/32	1/6 B	1/7 B	360	400	

Высота шатровой части здания


$$H_{uu} = H_{p,o} + H_{\kappa p} = 3150 + 350 = 3500$$
 mm,

где $H_{\kappa p}$ – высота несущих конструкций кровли (плит покрытия или прогонов) плюс толщина самой кровли.

При наличии фонарной надстройки, высота которой определяется светотехническим расчетом с учетом типовых фонарных переплетов, в высоту шатровой части добавляется высота фонаря.

Устанавливаем горизонтальные размеры рамы и ее элементов.

В зданиях с кранами режима работы 7К и 8К вдоль крановых путей следует предусматривать проходы для их осмотра и ремонта. Проходы могут быть организованы через проемы в стенке колонны либо сбоку между колонной и краном (рис. 3). Ширину прохода назначают не менее 400 мм, высоту – 1800 мм. При проходе в стенке колонны высота сечения верхней части колонны h_6 должна быть не менее 1000 мм.

Рис. 3. Привязка колонны и крана к продольным разбивочным осям: a-c проемом для прохода в верхней части колонны; b-c проходом вдоль подкрановых путей

Привязка наружной грани колонны к разбивочной оси принимается:

- $-a_0 = 0$ (нулевая) в невысоких зданиях (при высоте от пола до низа фермы менее 16,2 м) с колоннами постоянного сечения при шаге колонн 6 м и кранах грузоподъемностью менее 30 т;
- $-a_0 = 500$ мм в относительно высоких зданиях (при высоте от пола до низа фермы более 30 м) с колоннами ступенчатого типа, при наличии мостовых кранов грузоподъемностью 80 т и более, а также в зданиях, обслуживаемых мостовыми кранами групп режима работы 7К и 8К (независимо от грузоподъемности крана) при устройстве прохода в верхней части колонны;

 $⁻a_0 = 250$ мм – в остальных случаях.

Принимаем привязку $a_0 = 500$ мм.

Высота сечения верхней (надкрановой) части колонн h_6 , назначается 450 или 700 мм (с учетом унифицированной привязки торца фермы к разбивочной оси 200 мм), но не менее 1/12 ее высоты H_6 из условия обеспечения необходимой жесткости колонны в плоскости рамы:

$$H_{\rm g}/12 = 6300 / 12 = 525$$
 мм, принимаем $h_{\rm g} = 700$ мм.

Минимальное расстояние от оси подкрановой балки до оси колонны (привязка крана)

$$\lambda_{\min} = B_1 + (h_6 - a_0) + c = 400 + (700 - 250) + 75 = 925 \text{ MM},$$

где $B_1 = 400$ мм — часть мостового крана, выступающая за ось рельса, принимается из табл. 2;

 $c=75\,$ мм — зазор между краном и гранью колонны по требованиям безопасности (при устройстве прохода размер λ включает еще 450 мм — габарит прохода с ограждением).

Расстояние λ принимается кратным 250 мм:

- при отсутствии прохода $\lambda = 750$ мм для кранов грузоподъемностью не более 50 т, $\lambda = 1000$ мм для кранов грузоподъемностью более 50 т;
- при устройстве прохода $\lambda=1000$ мм для кранов грузоподъемностью не более 125 т, $\lambda=1250$ мм для кранов грузоподъемностью более 125 т.

Принимаем $\lambda = 1000 \text{ мм} > \lambda_{\min} = 925 \text{ мм}.$

Пролет крана

$$L_k = L - 2\lambda_{\min} = 30000 - 2 \cdot 1000 = 28000$$
 mm.

Высота сечения подкрановой части колонны h_H назначается из условия обеспечения жесткости цеха в поперечном направлении и принимается не менее $h_{H, \min} = H/20 = 20400 / 20 = 1020$ мм, а в цехах с обслуживанием кранами групп режимов работы 7К и 8К – $h_{H, \min} \ge H/15$.

При совмещении оси подкрановой балки с осью подкрановой ветви колонны высоту сечения нижней части колонны принимаем:

$$h_H = a_0 + \lambda = 250 + 1000 = 1250 \text{ MM} > h_{H,\text{min}} = 1020 \text{ MM}.$$

1.3. Компоновка связей каркаса

Связи каркаса обеспечивают геометрическую неизменяемость и устойчивость элементов в продольном направлении, совместную пространственную работу конструкций каркаса, жесткость здания и удобство монтажа и состоят из двух основных систем: связей между колоннами и связей покрытия.

Связи между колоннами. Связи между колоннами (рис. 4) обеспечивают во время эксплуатации и монтажа геометрическую неизменяемость

каркаса и его несущую способность в продольном направлении, воспринимают и передают на фундамент ветровые нагрузки, действующие на торец здания, и воздействия от продольного торможения мостовых кранов, а также обеспечивают устойчивость колонн из плоскости поперечных рам.

Система связей по колоннам состоит из надкрановых одноплоскостных связей V-образной схемы, располагаемых в плоскости продольных осей здания, и подкрановых двухплоскостных крестовой схемы, располагаемых в плоскостях ветвей колонны.

Подкрановые связи в каждом ряду колонн располагаются ближе к середине блока здания, чтобы обеспечить свободу температурных деформаций в обе стороны и снизить температурные напряжения в элементах каркаса. Количество связей (одна или две по длине блока) определяется их несущей способностью, длиной температурного отсека и наибольшим расстоянием L_c от торца здания (температурного шва) до оси ближайшей вертикальной связи (см. табл. 1). При наличии двух вертикальных связей расстояние между ними в осях не должно превышать 40-50 м.

Надкрановые связи устанавливаются в крайних шагах колонн у торца здания или температурного блока, а также в местах, где предусматриваются вертикальные связи в плоскости опорных стоек стропильных ферм.

Промежуточные колонны (вне блоков связей) в уровне стропильных ферм раскрепляются распорками.

При большой высоте подкрановой части колонны целесообразна установка дополнительных горизонтальных распорок между колоннами, уменьшающих их расчетную длину из плоскости рамы (на рис. 4 показаны пунктиром).

Вертикальные связи по колоннам рассчитываются на крановые и ветровые нагрузки W, исходя из предположения работы на растяжение одного из раскосов крестовых подкрановых связей. При большой длине элементов, воспринимающих небольшие усилия, связи принимаются по предельной гибкости $\lambda_u = 200$.

Элементы связей выполняются из горячекатанных уголков, распорки – из гнутых прямоугольных профилей.

Связи покрытия. Система связей покрытия состоит из горизонтальных и вертикальных связей, образующих жесткие блоки в торцах здания или температурного блока и при необходимости промежуточные блоки по длине отсека (рис. 5).

Горизонтальные связи в плоскости нижних поясов стропильных ферм проектируются двух типов. Связи первого типа состоят из поперечных и продольных связевых ферм и растяжек (см. рис. 5, ε – при шаге ферм 6 м; см. рис. 5, ε – при шаге 12 м). Связи второго типа состоят из поперечных связевых ферм и растяжек (см. рис. 5, δ – при шаге ферм 6 м; см. рис. 5, ε – при шаге ферм 12 м).

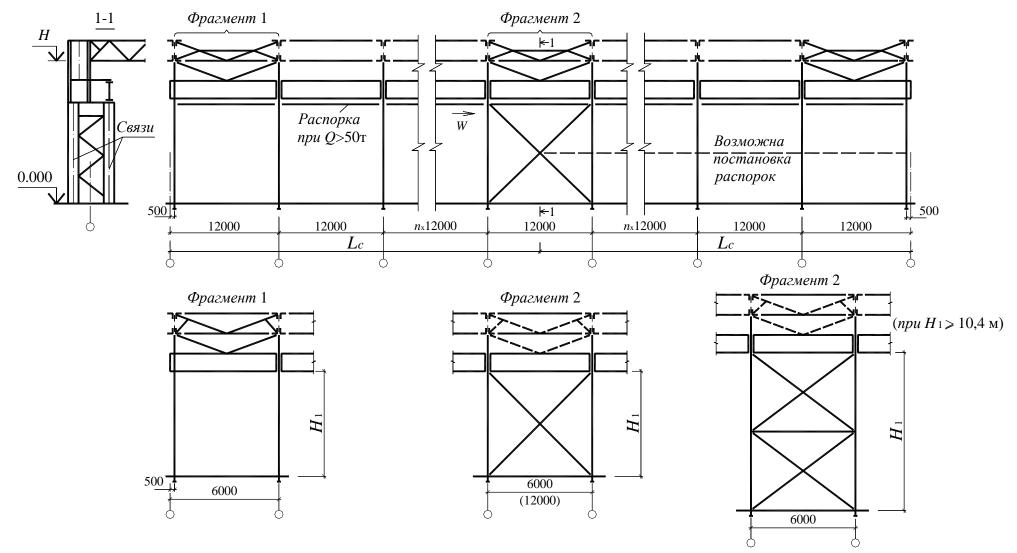
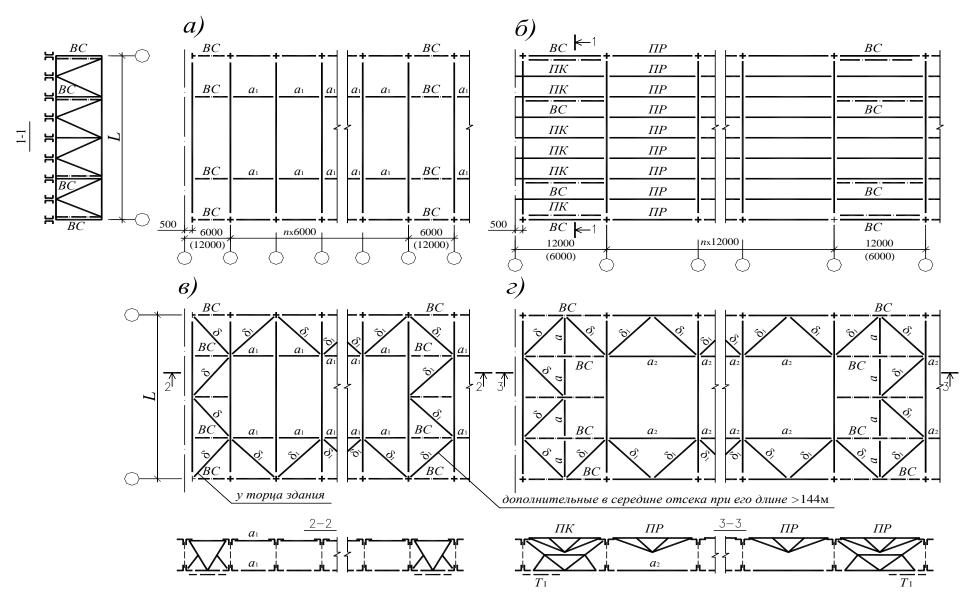



Рис. 4. Схема связей по колоннам

5. Связи покрытия

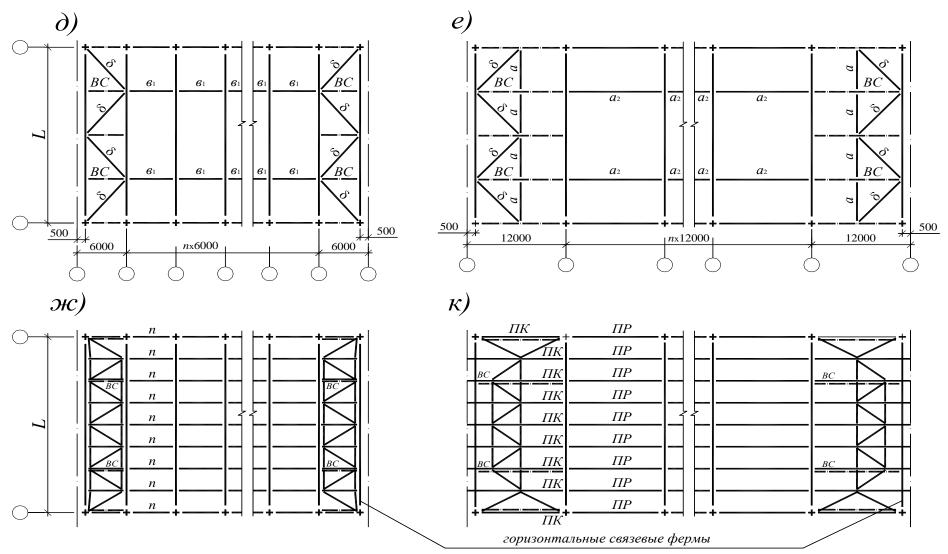


Рис. 5 (продолжение)

Поперечные связевые фермы по нижним поясам стропильных ферм предусматриваются в торцах здания или температурного (сейсмического) отсека (см. рис. 5, ∂ , e). Предусматривается также дополнительно одна связевая горизонтальная ферма в середине здания или отсека при их длине более 144 м в зданиях, возводимых в районах с расчетной температурой наружного воздуха -40° С и выше, и при длине здания более 120 м в зданиях, возводимых в районах с расчетной температурой ниже -40° С (см. рис. 5, e, e). Тем самым уменьшаются поперечные перемещения пояса фермы, возникающие вследствие податливости связей. Поперечные горизонтальные связи в уровне нижних поясов ферм воспринимают ветровую нагрузку на торец здания, передаваемую верхними частями стоек фахверка, и вместе с поперечными горизонтальными связями по верхним поясам ферм и вертикальными связями между фермами обеспечивают пространственную жесткость покрытия.

Продольные горизонтальные связи в плоскости нижних поясов стропильных ферм предусматриваются вдоль крайних рядов колонн в зданиях:

- с мостовыми опорными кранами групп режимов работы 7К и 8К, требующими устройства галерей для прохода вдоль крановых путей;
 - с подстропильными фермами;
 - с расчетной сейсмичностью 7, 8 и 9 баллов;
- с отметкой низа стропильных ферм свыше 18 м независимо от грузоподъемности кранов;
- в зданиях с кровлей по железобетонным плитам, оборудованных мостовыми опорными кранами общего назначения грузоподъемностью свыше 50 т при шаге стропильных ферм 6 м и свыше 20 т при шаге ферм 12 м;
- в однопролетных зданиях с кровлей по стальному профилированному настилу, оборудованных кранами грузоподъемностью свыше 16 т;
- при шаге стропильных ферм 12 м с применением стоек продольного фахверка.

Поперечные горизонтальные связи в уровне верхних поясов стропильных ферм предусматриваются для обеспечения устойчивости поясов из плоскости ферм. Из-за решетки поперечных связей по верхним поясам ферм затрудняется использование решетчатых прогонов и поэтому поперечные связи, как правило, не применяются. В этом случае развязка ферм обеспечивается системой вертикальных связей между фермами.

В зданиях с кровлей по железобетонным плитам в уровне верхних поясов стропильных ферм предусматриваются распорки (см. рис. 5, a). В зданиях с кровлей по стальному профилированному настилу распорки располагаются только в подфонарном пространстве, раскрепление ферм между собой осуществляется прогонами (см. рис. 5, δ); при расчетной сейсмичности 7, 8 и 9 баллов предусматриваются также поперечные связевые фермы или диафрагмы жесткости, устанавливаемые в торцах сейсмического отсека (см. рис. 5, κ — при шаге ферм 6 м; см. рис. 5, κ — при шаге ферм 12 м), и дополнительно не менее одной при длине отсека более 96 м в зданиях с расчетной сейсмичностью 7 баллов и при длине отсека более 60 м в зданиях с расчетной сейсмичностью 8 и 9 баллов.

В диафрагмах жесткости профилированный настил, кроме основных функций ограждающих конструкций, выполняет функцию горизонтальных связей по верхним поясам стропильных ферм. Поперечные диафрагмы жесткости и горизонтальные связевые фермы воспринимают продольные расчетные горизонтальные нагрузки от покрытия.

В зданиях с фонарем в случае устройства промежуточной диафрагмы жесткости фонарь над диафрагмой должен быть прерван. Диафрагмы жесткости выполняются из профилированного настила марок H60-845-0,9 или H75-750-0,9 по ГОСТ 24045-94 с усиленным креплением его к прогонам.

Стропильные фермы, не примыкающие непосредственно к поперечным связям, раскрепляются в плоскости расположения этих связей распорками и растяжками. Распорки обеспечивают необходимую боковую жесткость ферм при монтаже (предельная гибкость верхнего пояса фермы из ее плоскости при монтаже $\lambda_u = 220$). Растяжки предусматриваются для уменьшения гибкости нижнего пояса с целью предотвращения вибрации и случайных погнутостей при перевозке. Предельная гибкость нижнего пояса из плоскости фермы принимается: $\lambda_u = 400$ — при статической нагрузке и $\lambda_u = 250$ — при кранах режимов работы 7К и 8К или при воздействии динамических нагрузок, приложенных непосредственно к ферме.

Для горизонтальных связей обычно принимается связевая ферма с треугольной решеткой. При шаге стропильных ферм 12 м стойки-распорки связевых ферм проектируются с достаточно большой вертикальной жесткостью (как правило, из гнутых прямоугольных профилей) для опирания на них длинных диагональных раскосов, выполненных из уголков с незначительной вертикальной жесткостью.

Вертикальные связи между фермами предусматриваются по длине здания или температурного отсека в местах размещения поперечных связевых ферм по нижним поясам ферм. В зданиях с расчетной сейсмичностью 7, 8 и 9 баллов и кровлей по стальному профилированному настилу по рядам колонн вертикальные связи устанавливаются в местах размещения связевых ферм или диафрагм жесткости по верхним поясам стропильных ферм.

Основное назначение вертикальных связей – обеспечить проектное положение ферм при монтаже и увеличить их боковую жесткость. Обычно устраивается одна-две вертикальные связи по ширине пролета (через 12 – 15 м).

При опирании нижнего узла стропильных ферм на оголовок колонны сверху вертикальные связи располагаются также в плоскости опорных стоек ферм. При примыкании стропильных ферм сбоку к колонне эти связи располагаются в плоскости, совмещенной с плоскостью устройства вертикальных связей надкрановой части колонны.

В покрытиях зданий, эксплуатируемых в климатических районах с расчетной температурой ниже -40° C, следует, как правило, предусматривать (дополнительно к обычно применяемым связям) вертикальные связи, расположенные по середине каждого пролета вдоль всего здания.

При наличии жесткого диска кровли в уровне верхних поясов ферм следует предусматривать инвентарные съемные связи для выверки проектного положения конструкций и обеспечения их устойчивости в процессе монтажа