Лекция 6. Дифференциальные уравнения второго порядка (основные понятия). Дифференциальные уравнения второго порядка, допускающие понижение порядка

На лекции рассматриваются вопросы:

- 1. Дифференциальные уравнения второго порядка (основные понятия).
- 2. Дифференциальные уравнения второго порядка, допускающие понижение порядка.

1. Дифференциальные уравнения второго порядка (основные понятия)

Дифференциальным уравнением второго порядка называется уравнение вида F(x, y, y', y'') = 0 или вида y'' = f(x, y, y').

Общим решением дифференциального уравнения второго порядка называется функция $y = \varphi(x, C_1, C_2)$, обращающая уравнение в тождество при любых значениях постоянных C_1 и C_2 .

Решение уравнения второго порядка, получаемое из общего решения при фиксированных значениях постоянных C_1 и C_2 , называется **частным** решением уравнения. Частное решение уравнения второго порядка находят из общего его решения заданием **начальных условий**: $y_0 = y(x_0)$, $y_0' = y'(x_0)$.

Задача нахождения частного решения дифференциального уравнения второго порядка, удовлетворяющего заданным начальным условиям, называется *задачей Коши*.

14.8. Дифференциальные уравнения второго порядка, допускающие понижение порядка

Рассмотрим три типа дифференциальных уравнений второго порядка, сводящихся к уравнениям первого порядка.

1 mun: y'' = f(x).

<u>Особенность:</u> уравнение не содержит y, y'.

Способ решения:
$$\frac{dy'}{dx} = f(x),$$

 $dy' = f(x)dx,$
 $\int dy' = \int f(x)dx,$
 $y' = \varphi_1(x) + C_1,$
 $\frac{dy}{dx} = \varphi_1(x) + C_1,$
 $dy = (\varphi_1(x) + C_1)dx,$
 $\int dy = \int (\varphi_1(x) + C_1)dx,$
 $y = \varphi_2(x) + C_1x + C_2.$

Пример:

Решить уравнение $y'' = \cos x + \sin x$.

Peшeниe.
$$y' = \int (\cos x + \sin x) dx = \sin x - \cos x + C_1$$
,

$$y = \int (\sin x - \cos x + C_1) dx = -\cos x - \sin x + C_1 x + C_2.$$

Уравнение вида $y^{(n)} = f(x)$ решается последовательным интегрированием n раз.

2 mun:
$$y'' = f(x, y')$$
.

Особенность: уравнение не содержит явным образом у.

Способ решения: замена y'=p, где p=p(x). Тогда y''=p'. В результате уравнение приводится к уравнению p'=f(x,p) — уравнению первого порядка относительно p. Найдем его общее решение $p=\varphi(x,C_1)$, т.е. $y'=\varphi(x,C_1)$. Тогда $y=\int \varphi(x,C_1)dx$. Получим общее решение данного уравнения.

Пример:

Найти общее решение уравнения $y'' = \frac{y'}{x}$.

Решение. Уравнение не содержит явным образом у.

Замена: y' = p, где p = p(x).

Тогда y'' = p'.

Получим
$$p' = \frac{p}{x}$$
, $\frac{dp}{dx} = \frac{p}{x}$, $dp = \frac{p}{x}dx$, $dp = \frac{p}{x}dx$, $\int \frac{dp}{p} = \int \frac{dx}{x}$, $\ln|p| = \ln|x| + \ln C_1$, $\ln|p| = \ln C_1|x|$, $p = C_1x$, $y' = C_1x$, $dy = C_1x$, $dy = C_1xdx$, $dy = \int C_1xdx$, $dy = \int C_1xdx$, $dy = \int C_1xdx$, $dy = C_1\frac{x^2}{2} + C_2$.

3 mun: y'' = f(y, y').

<u>Особенность:</u> уравнение не содержит явным образом x.

Способ решения: Замена: y' = g, где g = g(y).

Тогда по правилу производной сложной функции
$$y'' = \frac{dy'}{dx} = \frac{dg}{dx} = \frac{dg}{dy} \cdot \frac{dy}{dx} = g \frac{dg}{dy} \, .$$

Получим уравнение первого порядка $g\frac{dg}{dy}=f(y,g)$. Из него найдем общее решение $g=\varphi(y,C_1),\ y'=\varphi(y,C_1)$. Из последнего уравнения найдем y.

Пример:

Найти частное решение уравнения $y''y^3 - 1 = 0$, удовлетворяющее начальным условиям y(0) = 1, y'(0) = 1.

Решение. Данное уравнение не содержит явным образом x.

Замена:
$$y' = g$$
, где $g = g(y)$. Тогда $y'' = g \frac{dg}{dy}$.

Уравнение примет вид
$$g \frac{dg}{dy} y^3 = 1$$
, $gy^3 dg = dy$, $gdg = \frac{dy}{y^3}$,
$$\int gdg = \int y^{-3} dy \,,$$

$$\frac{g^2}{2} = -\frac{1}{2y^2} + C_1 \,,$$

$$\frac{(y')^2}{2} = -\frac{1}{2y^2} + C_1 \,.$$

Так как y'(0) = 1, y(0) = 1, то $\frac{1}{2} = -\frac{1}{2} + C_1$, откуда $C_1 = 1$.

Тогда
$$\frac{(y')^2}{2} = -\frac{1}{2y^2} + 1$$
,
$$(y')^2 = -\frac{1}{y^2} + 2$$
,
$$(y')^2 = \frac{2y^2 - 1}{y^2}$$
,
$$y' = \frac{\sqrt{2y^2 - 1}}{y}$$
 — дифференциальное уравнение первого порядка с разделяющимися переменными;

$$\frac{dy}{dx} = \frac{\sqrt{2y^2 - 1}}{y},$$

$$\frac{ydy}{\sqrt{2y^2 - 1}} = dx,$$

$$\int \frac{ydy}{\sqrt{2y^2 - 1}} = \int dx,$$

$$\frac{1}{4} \int (2y^2 - 1)^{-\frac{1}{2}} d(2y^2 - 1) = x,$$

$$\frac{1}{2}\sqrt{2y^2 - 1} = x + C_2.$$

Так как y(0) = 1, то $\frac{1}{2} = C_2$.

Тогда
$$\frac{1}{2}\sqrt{2y^2-1}=x+\frac{1}{2},$$
 $\sqrt{2y^2-1}=2x+1,$ $2y^2-1=(2x+1)^2,$ $2y^2=(2x+1)^2+1$ — частный интеграл.