СТАНДАРТИЗАЦИЯ И ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ ПРОДУКЦИИ РАСТЕНИЕВОДСТВА

ПОТРЕБИТЕЛЬСКИЕ СВОЙСТВА ПРОДУКЦИИ РАСТЕНИЕВОДСТВА И

Слайдов: 46

ВОПРОСЫ

- 1. Особенности продукции растениеводства.
- 2. Характеристика основных питательных веществ пищевых продуктов.
- 3. Вещества неалиментарного характера.
- 4. Контаминанты растениеводческой продукции.
- 5. Показатели качества продукции растениеводства.
- 6. Методы определения показателей качества.

ОСОБЕННОСТИ ПРОДУКЦИИ РАСТЕНИЕВОДСТВА

Продукция растениеводства является биологическим объектом и обладает двумя взаимосвязанными свойствами:

- НАСЛЕДСТВЕННОСТЬ
- ИЗМЕНЧИВОСТЬ

Требования к её качеству регламентируются дифференцированно по товарным сортам, классам, категориям, номерам и в зависимости от направления использования.

ПОТРЕБИТЕЛЬСКИЕ СВОЙСТВА

• Потребительские свойства обеспечивают физиологические потребности человека, а также соответствующие целям, для которых данный вид продуктов предназначен и обычно используется. Они определяются по органолептическим, физикохимическим, микробиологическим, паразитологическим и радиологическим показателям, содержанию потенциально опасных химических соединений и биологических объектов, а также по показателям пищевой ценности продукции.

ПИЩЕВАЯ ЦЕННОСТЬ

Пищевая ценность отражает степень полноты полезных свойств продукта с учётом физиологических потребностей человека в основных пищевых веществах и энергии, что зависит от химического состава продукта. Пищевые продукты оцениваются прежде всего по содержанию основных питательных веществ: белков, жиров, углеводов, витаминов и минеральных веществ.

ГРУППЫ ХИМИЧЕСКИХ СОЕДИНЕНИЙ

АЛИМЕНТАРНЫЕ (НУТРИЕНТЫ)	НЕАЛИМЕНТАРНЫЕ, АНТИАЛИМЕНТАРНЫЕ, ТОКСИЧНЫЕ	ЧУЖЕРОДНЫЕ ПОТЕНЦИАЛЬНО ОПАСНЫЕ
Белки, жиры, углеводы, витамины	Формируют вкус, аромат, цвет; Препятствуют обмену нутриентов; БАВ	Контаминанты (Ксенобиотики)
ПОЛЕЗНЫЕ		ЯДОВИТЫЕ

КЛАССИФИКАЦИЯ ПИЩЕВЫХ ВЕЩЕСТВ по происхождению

ОРГАНИЧЕСКИЕ	МАКРОэлементы микроЭЛЕМЕНТЫ		
БЕЛКИ	НАТРИЙ ЖЕЛЕЗО, МЕД		
УГЛЕВОДЫ	КАЛИЙ	МАРГАНЕЦ	
ЖИРЫ	КАЛЬЦИЙ	ЦИНК, ЙОД, ХРОМ	
витамины	МАГНИЙ	КОБАЛЬТ, ФТОР	
ФЕРМЕНТЫ	ФОСФОР	МОЛИБДЕН	
ОРГ. КИСЛОТЫ	хлор никель		
ФИТОНЦИДЫ	СЕРА СТРОНЦИЙ		
АЛКАЛОИДЫ	КРЕМНИЙ		
		СЕЛЕН, ВАНАДИЙ	
Op. 50.1141.061446	Неорганические		
Органические	Минеральные в-ва	Вода	

БЕЛКИ (суточная потребность 1 г на 1 кг массы тела, детям 5-15 г)

• Качество белков характеризуется прежде всего их биологической ценностью. Биологически полноценными считают белки, содержащие в необходимых количествах все незаменимые аминокислоты. Наиболее близки к идеальному белки мяса, молока, яиц; растительные белки дефицитны по отдельным аминокислотам (белок пшеницы содержит 50% лизина, картофель и большинство бобовых – 60% метионина и цистина).

БЕЛКИ

• Наиболее дефицитны в растительных продуктах лизин, метионин и триптофан.

УСВОЯЕМОСТЬ БЕЛКОВ:

- молока и яиц 96%, мяса и рыбы 95,
- хлеба из муки 1 и 2 сортов 85,
- овощей 80, картофеля 70, риса 57, сои 56, пшеницы- 52, гороха 44%.
- Наибольшая усваиваемость отмечается при совместном применении белков растительного и животного происхождения.

ЖИРЫ (суточная потребность 0,6-1 г на 1 кг массы тела)

ЖИРЫ

ТРИГЛИЦЕРИДЫ

ЛИПОИДНЫЕ ВЕЩЕСТВА

ГЛИЦЕРИН

жирные кислоты

ФОСФОЛИПИДЫ СТЕРИНЫ

Насыщенные (предельные)

Ненасыщенные (непредельные)

ЖИРНЫЕ КИСЛОТЫ

НАСЫЩЕННЫЕ (В ОСНОВНОМ ЖИВОТНЫЕ) ПАЛЬМИТИНОВАЯ

СТЕАРИНОВАЯ

МИРИСТИНОВАЯ

ОЛЕИНОВАЯ

ЛИНОЛЕВАЯ

ЛИНОЛЕНОВАЯ

АРАХИДОНОВАЯ

жирные кислоты

> НЕНАСЫЩЕННЫЕ (В ОСНОВНОМ РАСТИТЕЛЬНЫЕ)

УГЛЕВОДЫ

УСВОЯЕМЫЕ

(СУТОЧНАЯ ПОТРЕБНОСТЬ 500 Г)

НЕУСВОЯЕМЫЕ

МОНО-САХАРИ-ДЫ

ГЛЮКОЗА ФРУКТОЗА ДИ-САХАРИ-ДЫ САХАРОЗА ЛАКТОЗА ПОЛИ-САХАРИ-ДЫ КРАХМАЛ ГЛИКОГЕН

ГРУБЫЕ ПИЩЕВЫЕ ВОЛОКНА ЦЕЛЛЮЛОЗА ЛИГНИН МЯГКИЕ ПИЩЕВЫЕ ВОЛОКНА ПЕКТИНОВЫЕ ВЕЩЕСТВА

ВИТАМИНЫ

жирорастворимые	водорастворимые
A - ретинол	С - аскорбиновая кислота
D - кальциферол	В ₁ - тиамин
E - токоферол	B ₂ - рибофлавин
К - филлохинон	${\bf B_3}$ (${\bf B_5}$)- пантотеновая к-та
А - ретинол	B ₆ - пиродоксин
	B ₉ - фолиевая кислота
	B ₁₂ - кобаламин
	Н - биотин
	РР - ниацин

ВИТАМИНОПОДОБНЫЕ ВЕЩЕСТВА

ХОЛИН

инозит

МЕТИЛМЕТИОНИНСУЛЬФОНИЙ (ВИТАМИН **U**)

ЛИПОЕВАЯ КИСЛОТА

ОРОТОВАЯ КИСЛОТА

ПАНГАМОВАЯ КИСЛОТА (B_{15})

ВИТАМИН **F**

СТЕПЕНИ ОБЕСПЕЧЕННОСТИ ВИТАМИНАМИ

АВИТАМИНОЗ

полное отсутствие витаминов

ГИПОВИТАМИНОЗ

недостаток 1 или нескольких витаминов

ГИПЕРВИТАМИНОЗ

избыток витаминов

ЧАЩЕ ВСЕГО ЧЕЛОВЕК ИСПЫТЫВАЕТ ГИПОВИТАМИНОЗ

ВЕЩЕСТВА НЕАЛИМЕНТАРНОГО ХАРАКТЕРА

СТИМУЛЯТОРЫ БАВ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ АНТИФЕРМЕНТЫ **АНТИАЛИМЕНТАРНЫЕ** (АНТИПИЩЕВЫЕ) **АНТИВИТАМИНЫ** ОКСАЛАТЫ ТОКСИЧНЫЕ ГЛИКОАЛКАЛОИДЫ

КОНТАМИНАНТЫ РАСТЕНИЕВОДЧЕСКОЙ ПРОДУКЦИИ

- **Контаминанты** ядовитые вещества химического и биологического происхождения.
- Химические тяжёлые металлы, пестициды, нитраты, радионуклиды.
- Биологические метаболиты (токсины) микроорганизмов пищевых продуктов, в результате попадания которых в организм человека возникают пищевые отравления (интоксикации). Чаще всего их вызывают стафилококки.

КОНТАМИНАНТЫ РАСТЕНИЕВОДЧЕСКОЙ ПРОДУКЦИИ

Если пищевой продукт является лишь передатчиком патогенных микроорганизмов, не развивающихся в продуктах, то при попадании их в организм возникают пищевые инфекции. Их вызывают вирусы, энтеропатогенные кишечные палочки (сальмонелла), энтерококки и др.

Токсины микроорганизмов (микотоксины) относятся к числу наиболее опасных природных загрязнителей. В настоящее время известно около 400 различных микотоксинов.

МИКОТОКСИНЫ

- В растениеводческой продукции наиболее распространены трихотецены, зеараленон, афлотоксины, патулин, эрготоксины и др.
- В настоящее время в мире более **25**% всего урожая зерновых и до **4**% комбикормов поражено микотоксинами, распространение которых приобретает глобальный характер.
- •Ежегодный **ущерб** в мире от развития плесневых грибов на с.-х продуктах и сырье превышает **30 млрд**. долларов.

- В настоящее время известно около 190 трихотеценовых микотоксинов, которые синтезируются грибами родов <u>Fusarium</u>, <u>Cephalosporium</u>, <u>Myrothecium</u>, <u>Stachybotrys</u>, <u>Trichoderma</u> и <u>Trichothecium</u>.
- Наиболее часто встречающимся фузариотоксином из группы трихотеценов является **дезоксиниваленол** (вомитоксин) $C_{15}H_{20}O_6$ продукт жизнедеятельности возбудителя фузариоза зерновых Fusarium graminearum.

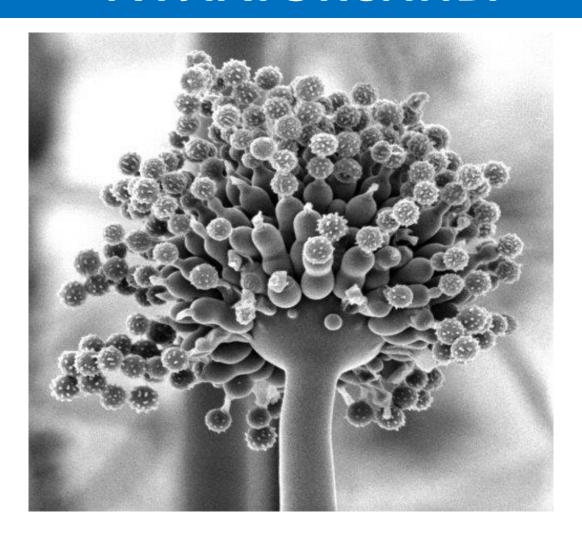
Спороношение Fusarium oxysporum

Поражение пшеницы фузариозными грибами

слева – здоровое зерно, справа – поражённое фузариозом

- **Т-2 токсин** $C_{24}H_{34}O_9$ также является фузариотоксином. Наиболее часто содержится в зерне кукурузы и комбикорме.
- Зеараленон может образоваться при хранении зерна пшеницы, ржи, кукурузы, ячменя, сорго с влажностью 25-30% и температурой +15+30°C, а также в предуборочный период.

Обнаруживается в кукурузном силосе, масле, крахмале, если они произведены из кукурузы, содержащей микотоксин.



Мицелий гриба Trichoderma

АФЛАТОКСИНЫ

- микотоксины, которые вырабатывают грибы Aspergillus flavus и Aspergillus parasiticus. Являются одними из самых мощных токсинов.
- Известны афлатоксины $\mathbf{B_1}$ и $\mathbf{B_2}$, $\mathbf{G_1}$ и $\mathbf{G_2}$, а также $\mathbf{M_1}$ (молочный токсин).
- Афлатоксины загрязняют арахис, кукурузу и другие зерновые и масличные культуры, образуясь при самосогревании зерна. Широко распространён наиболее токсичный афлатоксин В₁.

АФЛАТОКСИНЫ

Конидиеносец с конидиями Aspergillus niger

ОХРАТОКСИНЫ

- вырабатываются грибами родов <u>Aspergillus</u> и <u>Penicillium</u>.
 - Образуются в основном во время хранения зерна, сухого винограда и кофе в тёплых и влажных условиях с влажностью выше 14% и температурой не выше +20°C.
- Часто обнаруживаются в кормах.

ПАТУЛИН

• вырабатывается различными плесневыми грибами из родов <u>Penicillium</u> и <u>Aspergillus</u>, обнаруживается преимущественно в заплесневелых фруктах, овощах, ягодах и продуктах их переработки — соках, джемах, пюре, компотах.

Чаще, чем другие плоды, загрязняет яблоки. Максимальное токсинообразование наблюдается при температуре +21+30°C.

ПАТУЛИН

Мицелий и спороношение Penicillium на лимоне

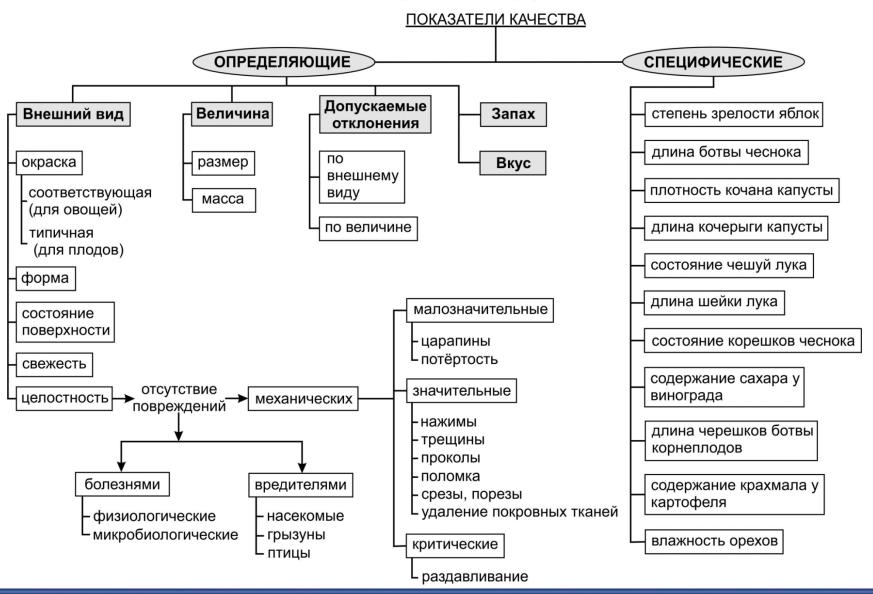
ЭРГОТОКСИНЫ

• основные действующие вещества плодовых тел спорыньи, поражающей более 150 видов злаков, главным образом рожь, а также пшеницу, ячмень, овёс.

- 1. БОТАНИКО-ФИЗИОЛОГИЧЕСКИЕ культура, её вид, форма возделывания (озимая, яровая), анатомические и морфологические особенности, сорт, всхожесть и энергия прорастания.
- 2. ОРГАНОЛЕПТИЧЕСКИЕ окраска, цвет, запах, вкус, консистенция, состояние поверхности, степень зрелости, определяемые при помощи органов чувств или специальных анализаторов.

• 3. ФИЗИЧЕСКИЕ – форма, линейные размеры, масса, крупность, выполненность, выравненность, масса 1000 зёрен (семян), стекловидность, плотность, плёнчатость, натура, целостность. Физические показатели предназначены для определения физических свойств, которые лежат в основе различных приёмов перемещения, очистки и переработки сырья.

• 4. ХИМИЧЕСКИЕ — влажность, зольность, содержание сухого вещества, протеина (белка), крахмала, сахара, соли, содержание и качество клейковины, химический состав. Эти показатели характеризуют количество, качество и неравномерность распределения химических веществ. Они предназначены для оценки питательной ценности, правильной организации хранения, порядка и режимов переработки сырья.


• 5. ТЕХНОЛОГИЧЕСКИЕ – содержание ядра, выход и качество продуктов переработки, % отходов, массовая доля составных частей, затраты на производство единицы массы готовой продукции. Эти показатели учитывают совокупность природных особенностей сырья для его более точной характеристики при использовании по целевому назначению в определённой отрасли промышленности.

ПОКАЗАТЕЛИ КАЧЕСТВА ЗЕРНА

Показатели качества хлебов 1 группы, установленные в действующих государственных стандартах на продовольственное зерно

Культура	Влаж- ность, %	Натура, г/л	Стекло- вид- ность, %	Содержа ние белка, %	Содержа ние клейко- вины, %	Сорная примесь, %	Зерно- вая примесь, %
Пшеница	14	710-750	40-60	10-14,5	18-32	2-5	5-15
Рожь	14	640-700	-	-	-	2-5	4-15
Ячмень	14,5	530-670	-	-	-	2	2
Овёс	13,5	460	-	-	-	1	2

КЛАССИФИКАЦИЯ ПОКАЗАТЕЛЕЙ КАЧЕСТВА КАРТОФЕЛЯ, ОВОЩЕЙ, ПЛОДОВ

КЛАССИФИКАЦИЯ ПОТРЕБИТЕЛЬСКИХ СВОЙСТВ И ПОКАЗАТЕЛЕЙ КАЧЕСТВА ПРОДУКЦИИ (группы)

-appaheah RNH

- ФУНКЦИОНАЛЬНОГО (энерг. ценность)
- СОЦИАЛЬНОГО (внешний вид, состав)
- КЛАССИФИКАЦИОННОГО (засорённость)

НАДЁЖ-НОСТИ

- ДОЛГОВЕЧНОСТЬ (сроки хранения)
- СОХРАНЯЕМОСТЬ (качество хранения)

ЭКОЛОГИ-ЧЕСКИЕ

- БЕЗВРЕДНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ
- УТИЛИЗАЦИЯ

БЕЗОПАС-НОСТИ

- ХИМИЧЕСКАЯ (пестициды, нитраты)
- БИОЛОГИЧЕСКАЯ (микотоксины, БАВ)
- РАДИАЦИОННАЯ (радионуклиды)

ГРАДАЦИИ КАЧЕСТВА ПРОДУКЦИИ

- Стандартная продукция соответствует установленным требованиям по всем регламентированным показателям.
- Нестандартная продукция не соответствует установленным требованиям по 1 или нескольким показателям, но оно не является критическим (опасным).
- Нестандартная продукция может быть
 реализована по пониженным ценам или
 направлена в переработку или на корм скоту.

ГРАДАЦИИ КАЧЕСТВА ПРОДУКЦИИ

СТАНДАРТНАЯ	НЕСТАНДАРТНАЯ	отход
Товарный сорт	Пригодная	Непригодная неопасная
Класс Категория	Условно	Непригодная
Номер	пригодная	опасная
Марка	Брак устранимый/неустранимый	
Полное соответствие требованиям	Несоответствие по 1 или более показателям	Критическое несоответствие

КЛАССИФИКАЦИЯ ДЕФЕКТОВ ПРОДУКЦИИ

- Дефект несоответствие заданному или ожидаемому требованию, а также требованию, относящемуся к безопасности.
- Их классифицируют по степени значимости, методам и средствам обнаружения (устранения), месту возникновения.
- По степени значимости дефекты бывают критические, значительные и малозначительные.

ДЕФЕКТЫ ПРОДУКЦИИ

- Критические несоответствия требованиям, которые могут нанести вред жизни, здоровью, имуществу или окружающей среде. Продукцию нельзя использовать по назначению.
- Значительные несоответствия, существенно влияющие на использование продукции по назначению и её сохранность, но не влияющие на безопасность.
- Малозначительные несоответствия, не оказывающие существенного влияния на потребительские свойства продукции.

ИСПОЛЬЗОВАНИЕ ПРОДУКЦИИ С ДЕФЕКТАМИ

ДЕФЕКТЫ	продукция
Критические	Неликвидные отходы
Значительные выше нормы	Нестандартная
Значительные в пределах нормы	Стандартная
Малозначительные с ограничениями	Стандартная
Малозначительные без ограничений	Стандартная (возможно) Нестандартная

КЛАССИФИКАЦИЯ ДЕФЕКТОВ ПРОДУКЦИИ

- По методам и средствам обнаружения явные и скрытые.
- По методам и средствам устранения устранимые и неустранимые.
- По месту возникновения технологические, предреализационные, послереализационные.

КЛАССИФИКАЦИЯ МЕТОДОВ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ КАЧЕСТВА

ПО СПОСОБУ ПОЛУЧЕНИЯ ИНФОРМАЦИИ	ПО ИСТОЧНИКАМ ПОЛУЧЕНИЯ ИНФОРМАЦИИ
ИЗМЕРИТЕЛЬНЫЕ (ИНСТРУМЕНТАЛЬНЫЕ) физические химические физико-химические микроскопические биологические физиологические технологические РЕГИСТРАЦИОННЫЙ РАСЧЁТНЫЙ	ИЗМЕРИТЕЛЬНЫЙ СОЦИОЛОГИЧЕСКИЙ ЭКСПЕРТНЫЙ
ОРГАНОЛЕПТИЧЕСКИЙ	

КЛАССИФИКАЦИЯ ИНСТРУМЕНТАЛЬНЫХ МЕТОДОВ

Физические	Поляриметрический, рефрактометрический, реологический, диэлектрический	
Химические	Химический состав	
Физико- химические	Хроматографический, потенциометрический, кондуктометрический, колориметрический	
Микроскопический	Установление подлинности, примесей, патогенов	
Биологический	Токсичность, видовой состав микрофлоры, заражённость	
Физиологический	Калорийность, биологическая ценность, безвредность	
Технологический	Пригодность к переработке	

Нормативно-правовая основа безопасности пищевой продукции в РФ

- Ф3 «О защите прав потребителей»
- Ф3 «О государственном регулировании в области генно-инженерной деятельности»
- Ф3 «О санитарно-эпидемиологическом благополучии населения»
- Ф3 «О качестве и безопасности пищевых продуктов»

Нормативно-правовая основа безопасности пищевой продукции в РФ

- СанПиН 2.3.2.1078-01 «Гигиенические требования безопасности и пищевой ценности пищевых продуктов».
- **Технический регламент** Таможенного союза ТР ТС 021/2011 «О безопасности пищевой продукции».
- **ГОСТ Р 51074-2003** «Продукты пищевые. Информация для потребителя. Общие требования»

Федеральные службы

- Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
- Федеральная служба по ветеринарному и фитосанитарному надзору
 (Россельхознадзор)
- Федеральное агентство по техническому регулированию и метрологии (**Росстандарт**)