ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

छाब्यक्षर्थ्यक्राध्यक्षर्थर छाब्यक्ष

ПЛАН

- 1. Степень окисления. Виды окислительно-восстановительных процессов. Важнейшие окислители и восстановители.
- 2. Методы расстановки коэффициентов в окислительно-восстановительных реакциях: метод электронного баланса и ионно-электронный метод (метод полуреакций).
- 3. Эквиваленты окислителей и восстановителей.

1. СТЕПЕНЬ ОКИСЛЕНИЯ. ВИДЫ ОКИСЛИТЕЛЬНО-ВОССТАНО-ВИТЕЛЬНЫХ ПРОЦЕССОВ. ВАЖНЕЙШИЕ ОКИСЛИТЕЛИ И ВОССТАНОВИТЕЛИ.

Химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, называются **ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫМИ.**

СТЕПЕНЬ ОКИСЛЕНИЯ –

ПРАВИЛА РАССТАНОВКИ СТЕПЕНЕЙ ОКИСЛЕНИЯ

•
•
Пример:
Пример реакции, идущей без изменения степеней окисления атомов элементов (то есть не являющейся окислительно-восстановительной):
Пример окислительно-восстановительной реакции:
Некоторые элементы могут проявлять различные степени окисления (в зависимости от условий реакции), поэтому различают следующие виды степеней окисления:
ВЫСШАЯ –
низшая –

ПРОМЕЖУТОЧНАЯ –

ОКИСЛЕНИЕМ называется процесс отдачи электронов атомом, ионом или молекулой. При этом частица, отдающая электроны, называется *ВОССТАНОВИТЕЛЕМ*.

ВОССТАНОВЛЕНИЕМ называется процесс присоединения электронов атомом, ионом, или молекулой. При этом частица, присоединяющая электроны, называется *ОКИСЛИТЕЛЕМ*.

ВИДЫ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ ПРОЦЕССОВ

Окислительно-восстановительные реакции делятся на *межмолекулярные*, *внутримолекулярные* и реакции *депропорционирования*.

МЕЖМОЛЕКУЛЯРНЫЕ –

4
ВНУТРИМОЛЕКУЛЯРНЫЕ –
РЕАКЦИИ ДИСПРОПОРЦИОНИРОВАНИЯ –

ВАЖНЕЙШИЕ ОКИСЛИТЕЛИ И ВОССТАНОВИТЕЛИ

окислители:

ВОССТАНОВИТЕЛИ:

2. МЕТОДЫ РАССТАНОВКИ КОЭФФИЦИЕНТОВ В ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЯХ

МЕТОД ЭЛЕКТРОННОГО БАЛАНСА

Основан на сравнении степеней окисления атомов в исходных и конечных веществах с учетом того, что число электронов, отданных восстановителем, должно равняться числу электронов, принятых окислителем.

Пример:

$$^{-1}$$
 $^{+5}$ $^{+5}$ 0 $^{+2}$ $^{+2}$ $^{+5}$ $^{+5}$ $^{+5}$ $^{+2}$ $^{+5}$ $^{+5}$ $^{+2$

ИОННО-ЭЛЕКТРОННЫЙ МЕТОД (метод полуреакций)

Основан на составлении ионных уравнений (полуреакций) для процессов окисления и восстановления с последующим суммированием их в общее уравнение. Применяется только для реакций, протекающих в водных растворах.

Пример 1. Окислительно-восстановительная реакция в <u>кислой</u> среде.

$$KMnO_4 + H_2S + H_2SO_4 \rightarrow S + MnSO_4 + K_2SO_4 + H_2O$$

Алгоритм подбора коэффициентов ионно-электронным методом

1) Расставить степени окисления элементов и определить вещества, содержащие атомы, степени окисления которых изменяются в ходе реакции:

2)	Составить ионные уравнения (полуреакции) для процессов окисления и восстановления.
	Для этого: ➤ Выбрать ионы, содержащие элементы с изменяющимися степенями окисления. В случае, если вещество не распадается в растворе на ионы, в полуреакцию записывается целая молекула;
	 Определить, избыток или недостаток кислорода находится в левой части полуреакции и дописать в полуреакцию недостающие ионы или молекулы согласно следующим правилам:
	• Избыток кислорода в левой части полуреакции
	• Недостаток кислорода в левой части полуреакции

3)	Уравнять левую и правую части полуреакций по числу атомов одинаковых элементов.
4)	Уравнять каждую полуреакцию по заряду.
5)	Определить общие множители (коэффициенты) для каждой полуреакции как наименьшее общее кратное числа отданных и принятых электронов.
6)	Записать суммарное (полное) ионное уравнение. Для этого сложить левые и правые части полуреакций, умножив их на полученные коэффициенты.
7)	Записать сокращенное ионное уравнение, для чего сократить одинаковые ионы и молекулы.
8)	Расставить полученные коэффициенты в молекулярное уравнение.

9) Проверить правильность расстановки коэффициентов. Для этого сосчитать количество атомов каждого элемента в левой и правой частях уравнения и убедиться, что оно одинаково (при этом количество атомов водорода проверяется в предпоследнюю, а кислорода – в последнюю очередь).

Пример 2. Окислительно-восстановительная реакция в нейтральной среде

$$Na_2SO_3 + KMnO_4 + H_2O \rightarrow Na_2SO_4 + MnO_2 \downarrow + KOH$$

Пример 3. Окислительно-восстановительная реакция в <u>шелочной</u> среде

$$Na_2SO_3 + KMnO_4 + NaOH \rightarrow Na_2SO_4 + K_2MnO_4 + Na_2MnO_4 + H_2O$$

3. ЭКВИВАЛЕНТЫ ОКИСЛИТЕЛЕЙ И ВОССТАНОВИТЕЛЕЙ

ЭКВИВАЛЕНТОМ ОКИСЛИТЕЛЯ называется такое его количество, которое, восстанавливаясь, присоединяет 1 моль электронов.

$$\Theta_{OKUCJ.} = 1/n$$
 (моль) $\Theta_{OKUCJ.} = M/n$ (г/моль),

где п – число электронов, принятых одной молекулой окислителя.

ЭКВИВАЛЕНТОМ ВОССТАНОВИТЕЛЯ называется такое его количество, которое, окисляясь, высвобождает 1 моль электронов.

$$\Theta_{60ccm.} = 1/n$$
 (моль)
 $\Theta_{60ccm.} = M/n$ (г/моль),

где п – число электронов, отданных одной молекулой восстановителя.

Пример расчета:

$$MnO_4^- + e^- \rightarrow MnO_4^{2^-}$$

 $SO_3^{2^-} + 2OH^- - 2e^- \rightarrow SO_4^{2^-} + H_2O$

 $\Im (KMnO_4) = 1/1 = 1$ моль — эквивалент окислителя. $\Im m (KMnO_4) = M (KMnO_4)/1 = 158 г/моль — эквивалентная масса окислителя.$

 $\Im(\text{Na}_2\text{SO}_3) = \frac{1}{2}$ моль — эквивалент восстановителя. $\Im(\text{Na}_2\text{SO}_3) = M(\text{Na}_2\text{SO}_3)/2 = 106/2 = 53$ г/моль — эквивалентная масса восстановителя.