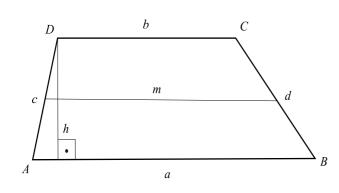

3.2. Четырёхугольники

Произвольный выпуклый четырёхугольник (рис. 6). Для него:



 d_1, d_2 — длины диагоналей; φ — угол между диагоналями; $S = \frac{1}{2} d_1 d_2 \sin \varphi$ — площадь.

$$S = \frac{1}{2}d_1d_2\sin\varphi - - площадь.$$

Puc. 6

Трапеция — четырёхугольник, у которого стороны две параллельны, а две другие — нет (рис. 7). Для неё:

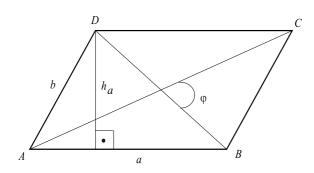
Puc. 7

a, b — длины оснований;

c, d — длины боковых сторон;

m — длина средней линии;

h — длина высоты.


Дополнительные сведения:

1)
$$m = \frac{a+b}{2}$$
;

$$2) S = \frac{a+b}{2}h = mh;$$

- 3) при c = d трапецию называют *равнобокой*;
- 4) при c = h или d = h трапецию называют *прямоугольной*.

Параллелограмм — четырёхугольник *ABCD*, которого противолежащие стороны параллельны (рис. 8). Для него:

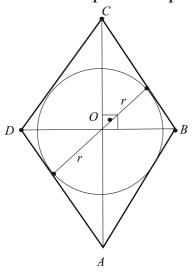
a, b — длины смежных сторон;

 d_1, d_2 — длины диагоналей;

 φ — величина угла между $d_1 u \ d_2$;

A — величина угла между a и b;

 h_a — длина высоты, опущенной на сторону a.


Puc. 8

Дополнительные сведения:

1)
$$S = a \cdot b \cdot \sin A = a \cdot h_a = \frac{1}{2} d_1 d_2 \sin \varphi$$
 — площадь $ABCD$;

2)
$$d_1^2 + d_2^2 = 2(a^2 + b^2)$$
 — свойство диагоналей и сторон.

Ромб — паралеллограм, у которого a = b (рис. 9). Для него:

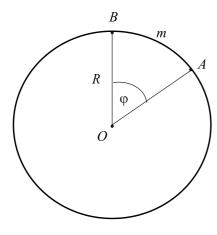
Puc. 9

а — длина стороны;

h — длина высоты, опущенной на сторону а;

 d_1, d_2 — длины диагоналей;

r — радиус вписанной окружности; A — величина одного из углов ромба;


S — площадь.

Дополнительные сведения:

1) $d_1 \perp d_2$;

2)
$$S = \frac{1}{2}d_1d_2 = a \cdot h_a = a^2 \cdot \sin A$$
;
3) $h = 2r$;
4) $d_1^2 + d_2^2 = 4a^2$.

3.3. Окружность, круг, сектор (рис. 10). Для них:

Puc. 10

 $\alpha = \angle AOB;$ R — радиус окружности и круга; l — длина дуги AmB; c — длина окружности; $S_{\text{сект}}$ — площадь сектора OAB; S — площадь круга.

Дополнительные сведения:

1)
$$l = \alpha R$$
;

2)
$$c = 2\pi R$$
;

3)
$$S_{\text{cert}} = \frac{1}{2}l \cdot R = \frac{1}{2}\alpha R^2$$
;

4)
$$S = \pi R^2$$
.